AMAZON EC2 GPUクラウ ドによるOPENFOAM流体解 析の性能評価

西條晶彦,井口寧,松澤照男 北陸先端科学技術大学院大学

背景

- ・クラウド計算機によるHPC資源の利用
 - ・払ったぶんだけの計算機資源 (pay-as-you-go) を確保
 - ・大学・研究機関等に所属していなくても誰でもHPCが使える
- ・Webサイトやデータ解析の分野では使用例がある
- ・科学技術計算の分野における使用例は未だ少ない

研究目的

- ・クラウドHPCであるAmazon EC2サービスにおいて流体 解析計算の性能測定
 - ・流体ソルバOpenFOAMのGPU対応版ソルバを開発EC2
 上での高速化

クラウドHPCはMPI通信性能が非常に低い

- ・MPI数の増加は通信コスト増大, Courant数の増加, コ スト増
- ・Iノードあたりの性能を高めるためのGPGPUとMPIを 組み合わせたソルバの開発が必要

AMAZON EC2 GPU CLUSTER COMPUTE INSTANCE

- ・EC2サービスによって提供されるGPUクラウドマシン (cg1.4xlarge)をオンデ マンド契約形態で利用 (米東海岸N.Virgina地域)
 - Quadcore Intel Xeon 5570 2.93 Ghz x2 (8cores)
 - 22GB Memory
 - NVIDIA M2050 (2687MB) x 2
 - 10 GbEtherNet
 - Amazon Linux AMI 2012.03 (RHEL base)
 - \$2.10 /hour / node

EC2計算環境構築

- Youtubeの公式チュートリアル動画を参考: "Building a Cluster in Less Than Ten Minutes"
- ・見かけは普通の遠隔マシン, sudo権限があるので自由度が高い
- CUDA SDK, OpenFOAM, GPUソルバ, 解析ケースを持つMachine Imageを作成, これ をWebコンソールからデプロイする
- 今回の計算ではインスタンスの共有ドライブは作らず、それぞれのインスタンスが自分自身のルートノードをストレージとする。並列計算の場合は分割ケースを全てコピー
 - \$ 0.10 / GB / month

EC2 WEB CONSOLE

Events	4				1990	St							a. 645
INSTANCES	Viewing: All Instances All Instance Types Search									≪ ≪ 1	I < ≤ 1 to 5 of 5 Instances		
Instances		Name ®	Instance	AMI ID	Root Device	Туре	State	Status Checks	Alarm Status	Monitoring	Security Groups	Key P	air Name
Spot Requests	0	GPU	i-c527c3be	ami-eccf6285	ebs	cg1.4xlarge	stopped		none	basic	GPU	ec2gp	u
Reserved Instances		empty	i-c418c1be	ami-4fe55326	ebs	cg1.4xlarge	stopped		none	basic	GPU	ec2gp	u
IMAGES		empty	i-1cce1666	ami-27aa1c4e	ebs	cg1.4xlarge	stopped		none	basic	GPU	ec2gp	u
AMIs		empty	i-e6ee4a9c	ami-27aa1c4e	ebs	cg1.4xlarge	stopped		none	basic	GPU	ec2gp	u
Bundle Tasks		empty	📄 i-c4148dba	ami-27aa1c4e	ebs	cg1.4xlarge	running	2/2 checks pa	none	basic	GPU	ec2gp	u
NETWORK & SECURITY Security Groups Elastic IPs													
Placement Groups	1 EC2 Instance selected.												
Load Balancers Key Pairs Network Interfaces	EC2 Instance: i-c4148dba O ec2-54-234-29-99.compute-1.amazonaws.com										8		
	D	escription	Status Checks	Monitoring	Tags								
	Status checks detect problems that may impair this instance from running your applications.								Create Statu	Create Status Check Alarm			
		System S	tatus Checks				1	Instance Statu	c Checks				

PCC-GPU: APPRO GPU CLUSTER

- ・比較として北陸先端大情報センターから提供される内部の(in-house)型の GPUクラスタ(pcc-gpu)を用いる
 - Octocore AMD Opteron 6136 @ 2.4 GHz x 2 (16 cores)
 - 32 GB Memory
 - NVIDIA M2050 (2687MB) × 2
 - Infiniband QDR
 - CentOS 6.2
- ・8ノード使用(最大9ノード)

通信性能ベンチマーク

- Intel MPI Benchmarks (IMB) 3.2.3
- OpenFOAMで利用する2つの通信方式のベンチマークを同一ワ
 ークグループ内のノード間で行う
 - ・双方向通信: PingPong 2ノード間メッセージサイズに対する経 過時間
 - 縮約演算通信: Allreduce (MPI_SUM, 8bytes) ノード数に対する
 経過時間

IMB: PINGPONG (2 NODES)

IMB PingPong (2nodes)

IMB Allreduce (8bytes)

→ cg1.4xlarge → pcc-gpu

定常NS方程式

$$\mathbf{U}_f = \left(\frac{H(\mathbf{U})}{a_p}\right)_f - \frac{(\nabla P)_f}{(a_p)_f}$$

$$\nabla \cdot \left(\frac{1}{a_p} \nabla P\right) = \nabla \cdot \left(\frac{H(\mathbf{U})}{a_p}\right)$$
$$= \sum_{f} \mathbf{S} \left(\frac{H(\mathbf{U})}{a_p}\right)_{f}$$

 ・定常NS方程式の運動量 方程式をセルpとその 界面fで差分化し差分化 係数apと圧力勾配♥Pと
 中間的な速度場 Ufの関 係を導出

 連続の式の離散化を代入して、圧力のPoisson 方程式を解く

SIMPLE法

Algorithm 1 SIMPLE 法

1: 境界条件の設定

- 2: repeat
- 3: 離散化された運動量方程式を解いて中間的な速度場を算出
- 4: セル界面の質量流束の計算
- 5: PCG 法で圧力方程式を解き,不足緩和を適用
- 6: セル界面での質量流束を修正
- 7: 新しい圧力場から速度場を修正
- 8: 境界条件の更新
- 9: until 圧力場と速度場が閾値以下に収束するまで

PRECONDITIONED CG法

- ・3回のMPI縮約通信 CUBLAS
- SpMV (sparse Matrix Vector) CUDA ITSOL (Li and Saad, 2012) JAD形式
 - ・MPI双方向通信:袖領域の交換
- 前処理 CUDA ITSOL, NVIDIA CUSP

GPU線形ソルバ

- CUDA ITSOL (Li and Saad, 2011)
 - ・CUDA用の線形ソルバパッケージ
 - JAD形式 SpMV (Sparse Matrix Vector product)
 - ・GPU用の様々な前処理
- ・NVIDIA CUSP: 線形ソルバパッケージ AMG前処理
- ・これを用いてMPI通信を統合したOpenFOAM用線形ソルバを開発

JAD: SPARSE MATRIX STORAGE

・JAD: 疎行列を対角線方向に取り行方向からのCUDA スレッドで計算していく

JAD SPMVパフォーマンス

データ変換のキャッシュ

- ・行列のOpenFOAM形式からGPU用JAD形式への変換コス
 ト高
 - ・JAD形式は行列の非ゼロ要素の位置で決まる
 - ・最初の1回のループの際に並び替え順を記憶
 - ・以降のループでは行列値のみを転送し、並び替え

SPMV: MPI双方向通信

- 通信が行われる袖領域(Ghost cell)の配列番号を取得
- 袖領域のデータをCPUホスト側
 に引き上げ(D2H), MPI通信,
 GPUデバイス側に戻す(H2D)
- ・通信とSpMVはCUDAスレッド で同時に行なわれる

AMG前処理

- ・代数的マルチグリッド前処理 (Algebraic MultiGrid Preconditioner)
 - ・対象行列に対して粗い行列をいくつか生成し、粗行列での 解を元の密行列に還元して解く
 - ・非常に強力な収束性(反復数を減らす)があるがメモリ消 費が激しい
 - ・NVIDIA CUSP LIBRARYの smoothed_aggregation コードを利用

対象計算:胸部大動脈血流

- ・心臓から全身に血液を送る血
 管(図の赤い部分)
- 病理の原因となりうる、医療
 シミュレーションに重要な部
 位

血管メッシュの作成

・MRI画像より血管部を抽出(金 沢大学医学部との共同研究)

・Gambitによるメッシュ作成

・OF付属のツールでOFメッシュ に変換

血管メッシュの作成

ソルバ	simpleFoam (OpenFOAM-2.1.1)
物性值	動粘性係数 $\nu = 3.33 \times 10^{-6} \text{ [m2/s](血液)}$
乱流モデル	層流モデル
流入側境界条件	流入速度 $V = 0.461$ [m/s] (Re = 6500)
流出側境界条件	分岐管 P = 76 [Pa], 腹部 P = 0 [Pa]
外部収束緩和係数	圧力・速度ともに 0.6
外部反復収束条件	$\ \delta P\ _1 \le 1.0 \times 10^{-6} \text{ and } \ \delta V\ _1 \le 1.0 \times 10^{-6}$
線形ソルバ	圧力 GPU-AMG-CG 法, 速度 ILU-BiCG 法
内部反復収束条件	相対残差ノルム $\ \mathbf{r}\ _1 \le 1.0 \times 10^{-8}$

可視化結果

I778SIMPLEステップで

収束

計算メッシュ

	SMALL	MEDIUM	LARGE
節点数	1,912,272	2,980,302	5,144,730
サイズ	155MB	311MB	543MB

性能比較

・EC2でのCPU-ICCG法ソルバ(参考)

- ・EC2でのGPU-AMGCG法ソルバ
- ・ JAIST内部 GPU ClusterでのGPU-AMGCG法ソルバ

サイズに対するCG法ループ

EC2 vs. Inhouse: AMG-PCG inner loop

cg1.4xlarge (CPU-DIC)
 cg1.4xlarge (GPU-AMG)
 pcc-gpu (GPU-AMG)

ノード数に対するPCG法ループ

EC2 vs. In-house: CG LOOP (LARGE)

cg1.4xlarge (ICCG) ■ pcc-gpu (AMGCG) ■ cg1.4xlarge (AMGCG)

Number of Nodes

ノード数に対するSIMPLEループ(LARGE)

EC2 vs. Inhouse: SIMPLE LOOP

■ pcc-gpu ■ cg1.4xlarge

・相対残差 |r|, < 1.0 × 10⁻⁸ |r0|,

テキスト							
並列数		2	4	8			
ICCG	1005	1356	1362	1373			
AMG-CG	41	94	139	198			

・EC2クラウド環境においてOpenFOAM流体計算の性能測 定を行いCUDA ITSOLとNVIDIA CUSPを用いGPUソルバ を構築した

・大規模な血管形状メッシュに適用し、8ノードまで用いた並列計算においてスケールするコードを開発した