
NIIGATA UNIVERSITY

オープンソース可視化ソフトウエアのための高速並列リーダコードの開発

OpenFOAM native reader for ParaView 3

大嶋拓也(新潟大学)

1/21

NIIGATA UNIVERSITY

自己紹介

新潟大学工学部建設学科　建築学コース

所属

建築音響学 (音響数値解析)

所属学会

日本建築学会、日本音響学会、日本流体力学会、日本騒音制御工学会

専門

2/21

NIIGATA UNIVERSITY

開発動機(1)

・WindowsベースのCAE演習用教材の製作

　　- OpenFOAM (Cygwinベース) + ParaView (Windowsネイティブ)

・OpenFOAM付属のParaView (当時はParaView2)用リーダ

　　- OpenFOAMライブラリに依存

　　- CygwinライブラリとWindowsネイティブ(MSVC++)ライブラリは非互換

3/21

NIIGATA UNIVERSITY

開発動機(2)

・Windows上でParaViewからOpenFOAMデータを読み込むための選択肢

　　1. foamToVTK

　　　　◯: プログラミング不要

　　　　×: データ変換の手間と容量、解析上のタイムステップ情報が失われる

　　2. ParaViewをCygwin上でビルド、OpenFOAMライブラリとリンク

　　　　×: 非現実的(無理でした)、性能が貧弱(特にI/O)

　　3. OpenFOAMライブラリに依存しない(ネイティブ)リーダコードを作成

　　　　◯: ParaView単体で動作、全てを開発者の好みで作成できる

　　　　×: 開発労力、実現可能性

演習用教材以上の発展も見越して、3.のネイティブリーダ開発に決定

4/21

NIIGATA UNIVERSITY

Introduction

 ParaView does efficient rendering even for large (> 10 million cells) cases

 It’s I/O performance that defines user experience in real situations

 We want a fast reader for OpenFOAM!

 NB: The following explanations about the reader implementation is not meant to

be exhaustive. Please consult the actual source code for details.

5/21

NIIGATA UNIVERSITY

Server Process 1

VTK Pipeline
(Filters)

Parallel Reader

Parallel Renderer

Server Process 0

ParaView server-client model

GUI (Client)

VTK Pipeline
(Filters)

Parallel Reader

Multi-Piece
Data

GUI View (Client)

Parallel Renderer

Multi-Piece
Data

Server Process N

VTK Pipeline
(Filters)

Parallel Reader

Parallel Renderer

Multi-Piece
Data

6/21

NIIGATA UNIVERSITY

Piece treatment in the reader

processor0

Case
Directory

processor1

processor4

Each processorX
subdirectory is read

as a piece

Reader Process 0

processor2

Sub-reader 0

Sub-reader 1

Reader Process 1

Sub-reader 0

Sub-reader 1

processor3

Sub-reader 2

Each piece is assigned to a reader
process by an interleaved way (blindly
following The ParaView Guide)

7/21

NIIGATA UNIVERSITY

Server Process

ParaView reader request sequence (outline)

GUI (Client)

Reader Creation

SetFileName()

RequestInformation()

File - Open

Metadata

Apply
 RequestData()

Request

Request

VCR Play

Output

Pipeline

GUI Panel

Ti
m

el
in

e

RequestData()

Request
 Output

Pipeline

8/21

NIIGATA UNIVERSITY

Processing information request

Output metadata

 Number of data pieces

 Number of timesteps

 List of timesteps

 List of boundary patches

 List of cell/point/lagrangian arrays

 Collect metadata to server process 0 (the only interprocess communication)

Input information

 Number of server processes

 My process number

List time directories

Count the number of processorX subdirectories

Obtain from polyMesh/boundary file

List field objects under a time directory

Determine which processorX subdirectories to read

RequestInformation()

9/21

NIIGATA UNIVERSITY

Processing data request: Overview

RequestData()

Mesh Data Acquisition

Mesh Construction

Field Data Acquisition

Cell-to-Point Filtering

FoamFile Parser

 Implementation details follow

10/21

Append Dataset Pieces
 vtkAppendCompositeDataLeaves

NIIGATA UNIVERSITY

Processing Data Request: FoamFile Parser

FoamFile Parser

 Dedicated parser that handles C-like syntax of OpenFOAM file format

 Covers many undocumented exceptional syntaxes

 Directly interacts with zlib for gzip-compressed format support

 Hijacks crc32() by an empty dummy function when possible (+5% performance)

 Uses own string-to-float conversion routine as a replacement to system strtod()

 The key part that defines the reader performance for ascii cases

 Fast!

 Omits overflow/underflow handling

 Not meant to be accurate until the last bit of mantissa

 ... but proven to be reasonably accurate for postprocessing purposes

11/21

NIIGATA UNIVERSITY

Processing Data Request: Mesh construction (1)

Mesh Construction

 Convert OpenFOAM face-oriented polyMesh data structure to VTK cell-oriented

unstructured grid

 The key part that determines initial case loading time

Point #0
 Point #1
 Point #2
Cell #0

Owner Cells

Cell #1

Cell #2

Cell #0

Neighbour Cells

Cell #1

Cell #2

Face-Points

Point #0
 Point #1
 Point #2
 Point #3

Point #0
 Point #1
 Point #2

0

1

2

Face number

1. OpenFOAM polyMesh format

12/21

NIIGATA UNIVERSITY

Processing Data Request: Mesh construction (2)

2. Create intermediate cell-face list from owners and neighbours

Face #0
 Face #1
 Face #2

Cell-Faces

Face #0
 Face #1
 Face #2
 Face #3

Face #0
 Face #1
 Face #2

0

1

2

Cell number

3. Create ordered cell-point list (VTK unstructured grid)

Point #0
 Point #1
 Point #2

Cell-Points

0

1

2

Cell number

Point #3

Point #0
 Point #1
 Point #2
 Point #3
 Point #4

Point #0
 Point #1
 Point #2
 Point #3

13/21

NIIGATA UNIVERSITY

Processing Data Request: Mesh construction (3)

Creation of cell-point list from cell-face/face-point list (a rough sketch)

0
 1

2
3

4
 5

7
 6

Face 0

Face i
 a. Search for face i that does not share
any of its vertices with Face 0

b. Search for a pivot point which is the
opposite point of the edge that starts from
point 0 of face 0 and that does not belong
to face 0

0
 1

2

3

Face 0

Hexahedron and prism:

Tetrahedron and pyramid:

a. Search for a point that does not belong
to face 0

14/21

NIIGATA UNIVERSITY

Processing Data Request: Cell-to-point filtering

Cell-to-Point Filtering

 Does roughly what volPointInterpolation in OpenFOAM does or what

vtkCellDataToPointData in VTK does

 The filter stands at the middle of the two from accuracy point of view:

 Does not do inverse distance weighting (following vtkCellDataToPointData)

 Saves extra memory required to hold weighting factors

 Saves extra computational load to do IDW

 Does account for boundary values (following volPointInterpolation)

 Overrides filtered values at boundary points by boundary values

 Also accounts for all neighboring boundary values at patch-edge points

15/21

NIIGATA UNIVERSITY

Timing tests (1): Setup

Testing environment

 Mac Pro 3.0 GHz 4-core, 16GB RAM 1.0TBx3 RAID0, OS X 10.5.5

 OpenFOAM 1.5.x OS X Port 2008-10-08

 ParaView 3.5-CVS 2008-11-11

Timing instrument

 “Tools” -> “Timer Log”

Enabled fields

 p, U

16/21

Not an officially supported platform of OpenFOAM, take as a rough
indication. Also note the benchmarks are meant to show difference in design
philosophies, not to judge absolute technical superiorities.

NIIGATA UNIVERSITY

Timing tests (2): Simple serial case

Parallelepiped geometry meshed with tetrahedra

File format: Gzipped-Ascii

Case type: Serial case

Number of cells: 773,543 cells

(4.8x)

(3.6x)

17/21

NIIGATA UNIVERSITY

Timing tests (3): Parallel case

Parallelepiped geometry meshed with hexahedra

File format: Gzipped-Ascii

Case type: Serial / parallel-decomposed cases

Number of cells: 1,291,208 cells

18/21

Decomposed

NIIGATA UNIVERSITY

Timing tests (4): Parallel large case

19/21

Parallelepiped geometry meshed with hexahedra

File format: Gzipped-Ascii

Case type: Parallel-decomposed case

Number of cells: 12,150,000 cells

 (about 10x of the previous case)

NIIGATA UNIVERSITY

Summary and future works

Summary

 Implemented an OpenFOAM parallel reader for ParaView

 Found to be 3x – 7x (typically 4x – 5x) faster than PV3FoamReader in serial

 Parallel tests showed 2.6x – 3.2x speedup for 4 processors

Future works

 Make the reader a part of official ParaView/VTK distribution (involves politics)

 Geometry filter optimization (rather a matter of ParaView itself than the reader)

20/21

NIIGATA UNIVERSITY

Thanks for listening!

The reader code is available at
http://openfoamwiki.net/index.php/Contrib_Parallelized_Native_OpenFOAM_Reader_for_ParaView

21/21

