OpenFOAMとFDSのお話 -OpenFOAM勉強会 for beginner-

2013.04.14 KMori

0. 今月の一枚

恩田川(横浜市緑区長津田付近)

1.1. Thermal Inertia (熱慣性)

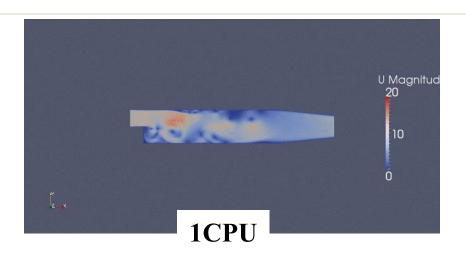
密度p[kg/m³], 比熱c[J/kgK], 熱伝導率k[W/mK]により温度伝導度a[m²/s]

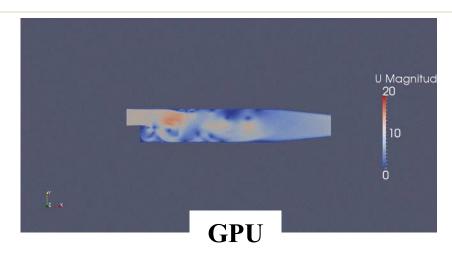
$$\alpha = \frac{k}{\rho c} [m^2 / s],$$

は定義される。また、 熱慣性は、 $k^2/\alpha = k\rho c$ [W²s/m⁴K²]で、(半無限の)固体表面における温度上昇の割合に関係するものである。これは、 熱慣性の単位の逆数

$$\frac{m^4 K^2}{W^2 s} = \frac{m^4 K^2}{S} = \frac{K^2}{W^2 / m^4} = \frac{\left(\frac{K}{W / m^2}\right)^2}{S}$$

をとることにより理解できる. 熱慣性が小さい場合, 温度は速く伝わり温度上昇の時間に対する割合は大きい.




熱慣性 値大:表面温度上昇小, 値小:表面温度上昇大

1.2. Thermal Inertia(熱慣性)

物質	<i>k</i> [W/mK]	C [J/kgK]	<i>ρ</i> [kg/m³]	α [m²/s]	<i>kρc</i> [W²s/m⁴K²]
銅	387	380	8940	1.14×10^{-4}	1.3×10^9
鋼(mild)	45.8	460	7850	1.26×10^{-5}	1.6×10^{8}
ブリキ(共通)	0.69	840	1600	5.2×10^{-7}	9.3×10^{5}
コンクリート	0.8-1.4	880	1900-2300	5.7×10^{-7}	2×10^{6}
ガラス(板)	0.76	840	2700	3.3×10^{-7}	1.7×10^{6}
Gypsum plaster	0.48	840	1440	4.1×10^{-7}	5.8×10^{5}
PMMA	0.19	1420	1190	1.1×10^{-7}	3.2×10^{5}
Oak	0.17	2380	800	8.9×10^{-8}	3.2×10^{5}
Yellow pine	0.14	2850	640	8.3×10^{-8}	2.5×10^{5}
アスベスト	0.15	1050	577	2.5×10^{-7}	9.1×10^{4}
Fibre断熱材	0.041	2090	229	8.6×10^{-8}	2.0×10^{4}
ポリウレタン	0.034	1400	20	1.2×10^{-6}	9.5×10^{2}
空気	0.026	1040	1.1	2.2×10^{-5}	(29.744)

2. GPU

	モデル 要素数	Xeon X5690 3.47GHz Quadro 4000 256コア	Core i7 X980 3.33GHZ GeForce GTX 460 336コア
GPU	1.2万	2788s	2311s
1 CPU	1.2万	GPUが遅い 1065s	1098s
GPU	120万	822s	683s
1 CPU	120万 6	PUが10倍高速 8884s	6768s

*二方向要素数10倍(全体で100倍要素)モデル、100ステップ解析.

**二方向要素数20倍(全体で400倍要素)モデル, GPU解析不能.

***GPUメモリーはともに2GB.

3. 最大Skewness(テトラ)

F14:0.876

OF2.1.0:1.126

F14:0.900

OFGPU02:1.31

F14:0.9552

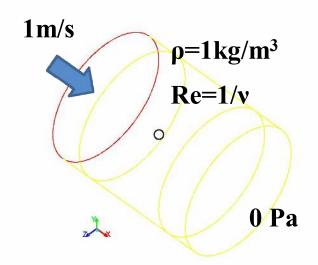
OF2.1.0:2.025

最大Skewness 値比較

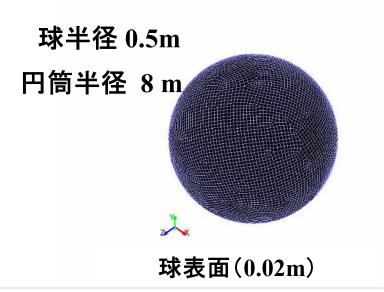
Model	OpenFOAM	FLUENT
Sphere-01	0.713	0.754
Sphere-02	0.807 (1.526) *	0.762
Sphere-03	0.893 (1.373) *	0.764
Duct-01	1.126	0.876
CC	1.244	0.879
Duct-02	1.31	0.900
Duct-03	0.915	0.941
Pr	1.551	0.9497
-	2.025	0.9552
-	0.626***	0.995**

- *()内はポリヘドラメッシュ, **FLUENTは最大値 1.
- ***最大アスペクト比 1408.
- Skewness はメッシュ品質に重要な指標.
- 1以下であれば良い. 2.0以下にはしたい.

4.1. 球をすぎる流れ

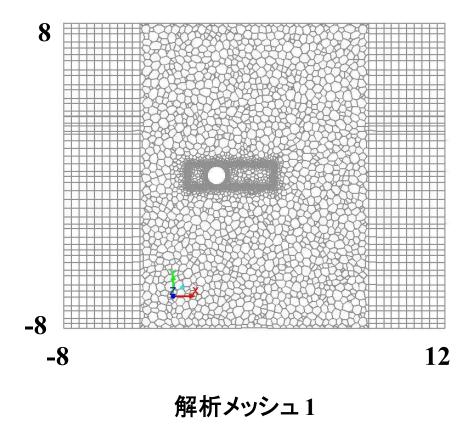

Simulation of Flow Past a Sphere using the Fluent Code

D.A. Jones and D.B. Clarke

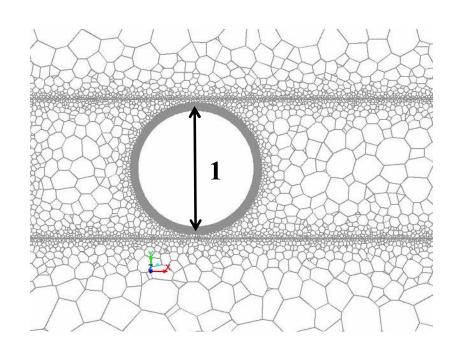

Maritime Platforms Division
Defence Science and Technology Organisation

DSTO-TR-2232

オーストラリア防衛科学技術研究所 レポート

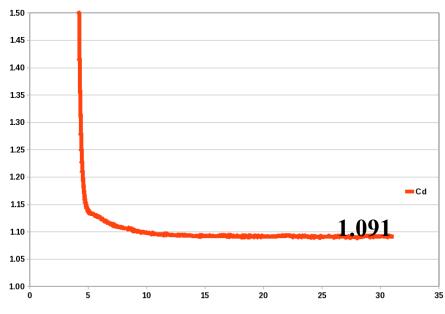


解析モデル



4.2. 球をすぎる流れ

725473 ポリヘドラ要素 Skew 1.397

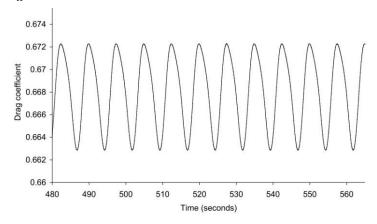

965120ヘキサ要素(FL) 球近傍で細分割

解析メッシュ1(拡大図)

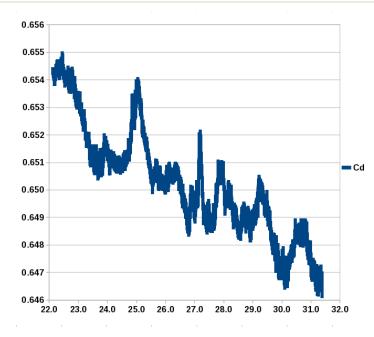
4.3. 球をすぎる流れ(Re=100)

 C_d =1.087(FL), 1.087~1.096(C/E)

OpenFOAM2.1.0 による C_D 値


*29万テトラ要素だと27.6s時点でほぼ定常 C_d =1.22345(誤差12.3%)

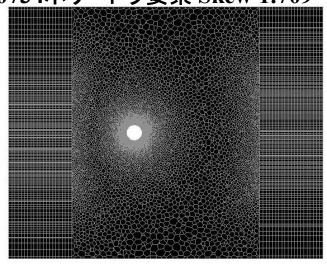
```
forces
          forceCoeffs:
  type
  functionObjectLibs ( "libforces.so" );
  outputControl timeStep;
  outputInterval 1;
            ("wall sphere");
  patches
  pName
             p;
  UName
             U;
  rhoName rhoInf;
                        // Indicates incompressible
  log
            true;
  rhoInf
              1;
                      // Redundant for incompressible
  liftDir
            (0\ 1\ 0);
  dragDir
            (1\ 0\ 0);
  CofR
                      // Axle midpoint on ground
           (0 - 0.5 0);
  pitchAxis (0 0 1);
  magUInf 1;
                    // Wheelbase length
  lRef
            1:
  Aref
          0.7854;
                    // Estimated
```


C_d 値等プリントのための入力

4.4.1. 球をすぎる流れ(Re=300, メッシュ1)

C_d =0.661 (FL), 0.656 \sim 0.671(C/E)

FLUENTによるC_d値

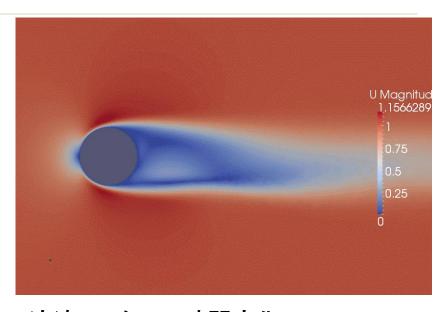

OpenFOAM2.1.0 による C_d 値

メッシュ1

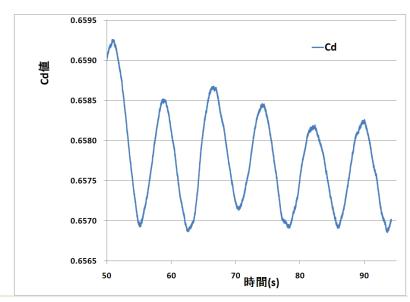
- 3秒程度の周期.
- 非定常な振動はあらわれなかった.
- 並列解析できなかった.

4.4.2. 球をすぎる流れ(Re=300, メッシュ2)

1340734ポリヘドラ要素 Skew 1.709

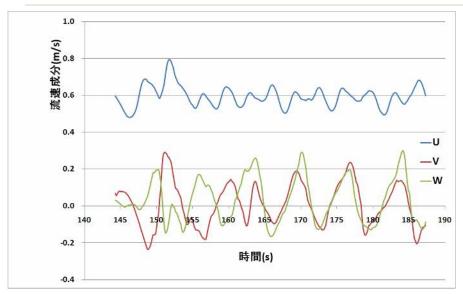


解析メッシュ2

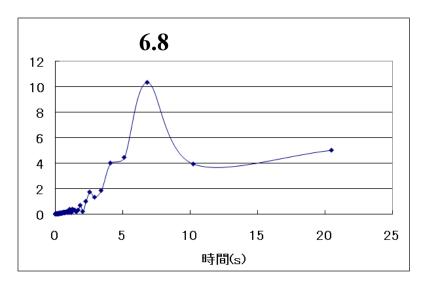

C_d 値および周期の比較

	平均	振幅	周期T*
OF	0.658	0.0009	8.19
FL	0.661	0.004	7.52

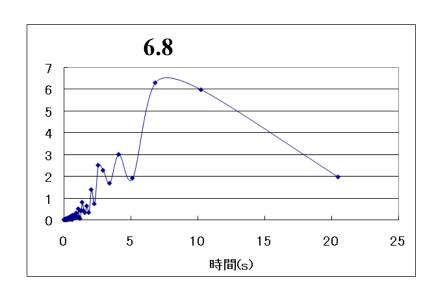
*St数(周期Tの逆数)は 0.134,0.133



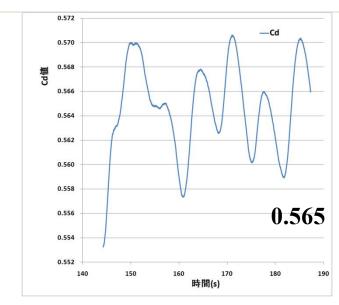
流速コンターの時間変化-Side View-

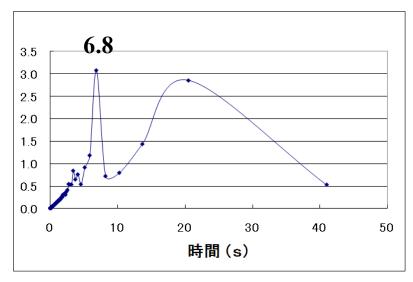


OpenFOAM2.1.0 によるC_d値

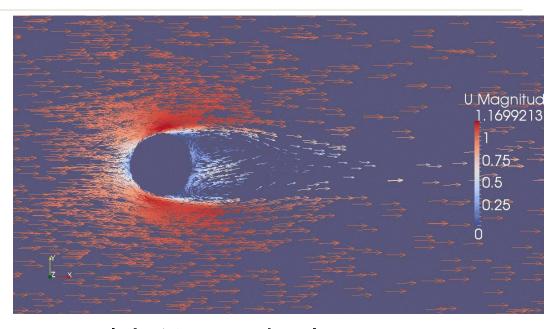

4.4.3. 球をすぎる流れ(Re=300, メッシュ2)

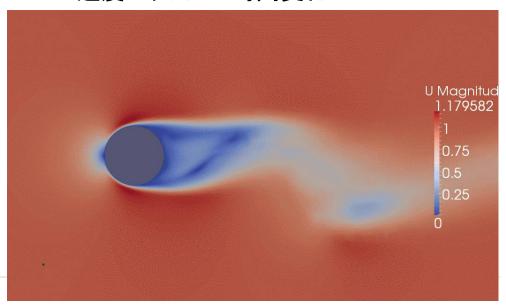
流速各成分の時間変動-位置(3.500)-


OpenFOAM2.1.0による流速x成分のFFT結果

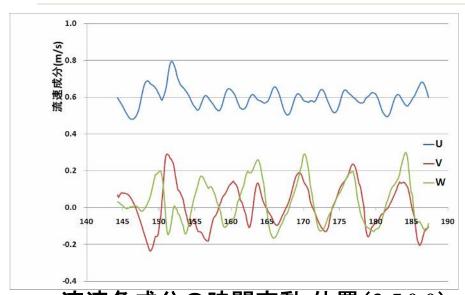

OpenFOAM2.1.0による流速y成分のFFT結果 Open

OpenFOAM2.1.0による流速z成分のFFT結果

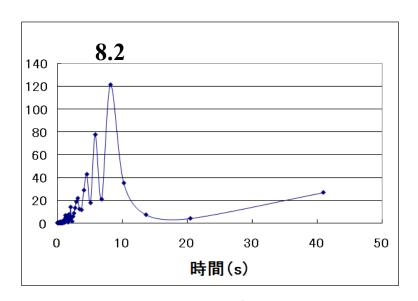

4.5.1. 球をすぎる流れ(Re=500, メッシュ2)


OpenFOAM2.1.1 による C_d 値

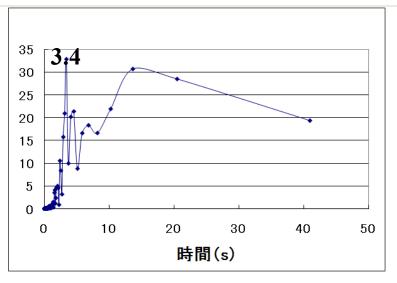
OpenFOAM2.1.1による C_d 値のFFT結果

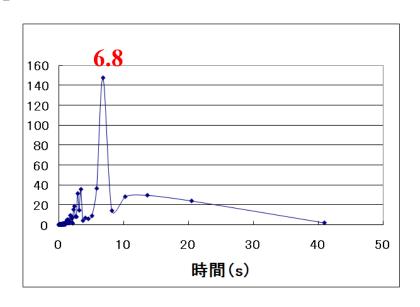


速度ベクトルの時間変化-Side View-



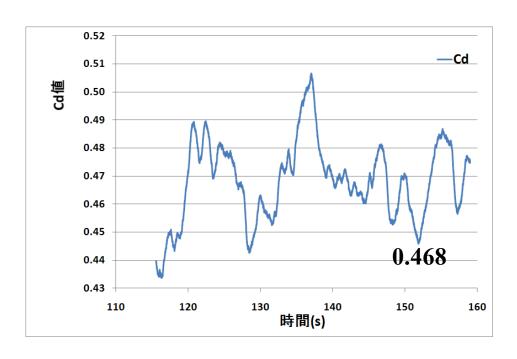
速度コンターの時間変化-Side View-


4.5.2. 球をすぎる流れ(Re=500, メッシュ2)


流速各成分の時間変動-位置(3.500)-

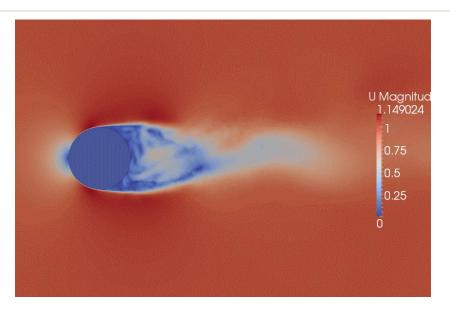
OpenFOAM2.1.1による流速y成分のFFT結果

OpenFOAM2.1.1による流速x成分のFFT結果

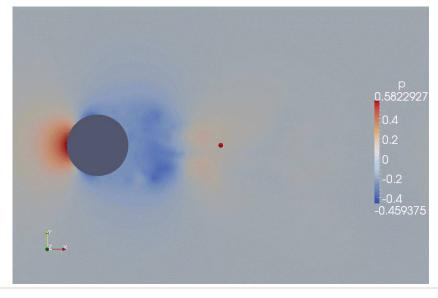


OpenFOAM2.1.1による流速z成分のFFT結果

4.6.1. 球をすぎる流れ(Re=10⁴, メッシュ2)


 C_d =0.387 (FL), 0.393 \sim 0.438(C/E)

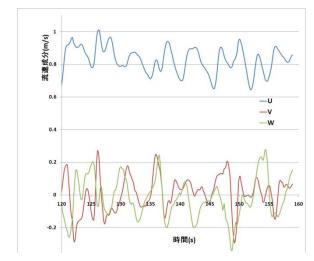
Splart-Allmarasモデル(DES)



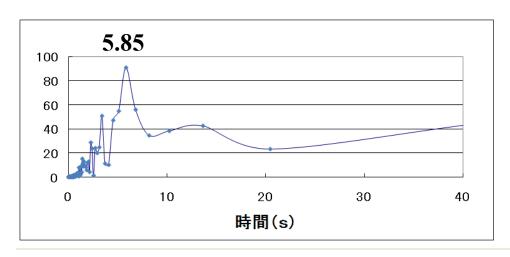
OpenFOAM2.1.0 による C_d 値

時間刻み 0.0005秒(Xeon X5690) 4並列で1サイクル9秒

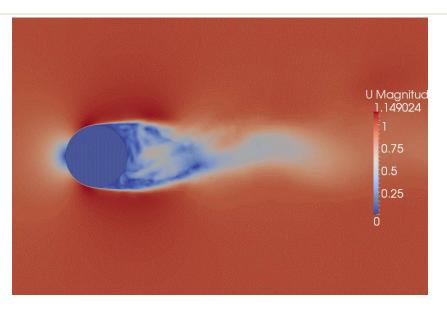
流速コンターの時間変化-Side View-

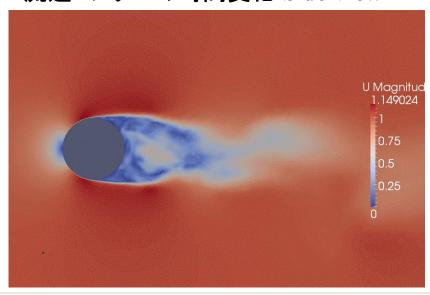


圧力コンターの時間変化-Side View-


4.6.2. 球をすぎる流れ(Re=10⁴, メッシュ2)

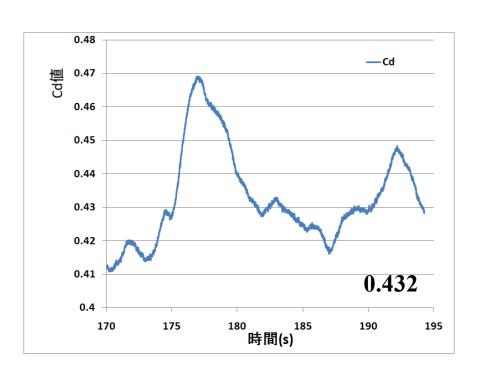
 C_d =0.387 (FL), 0.393 \sim 0.438(C/E)


Splart-Allmarasモデル(LES)


流速各成分の時間変動-位置(3.500)-

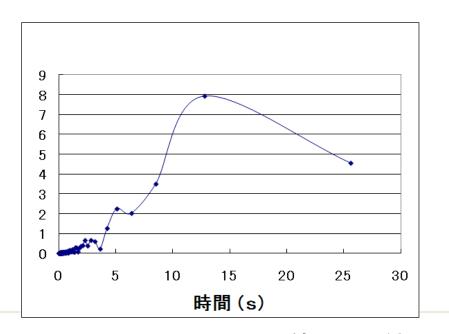
OpenFOAM2.1.0による流速z成分のFFT結果

流速コンターの時間変化-Side View-


流速コンターの時間変化-Top View-

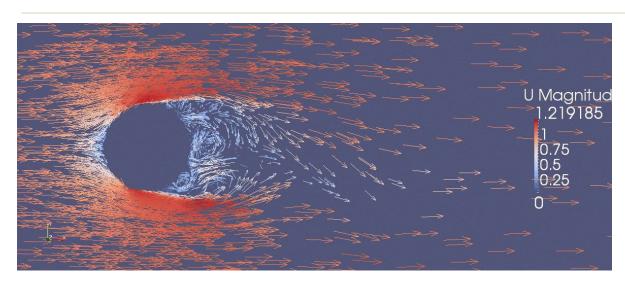
4.6.3. 球をすぎる流れ(Re=10⁴, メッシュ2)

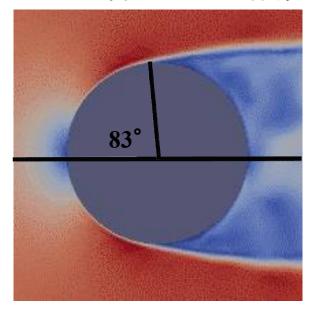
 $C_d = 0.387(F), 0.393 \sim 0.438(C/E)$


oneEqEddyモデル(LES)

時間刻み 0.0005秒(Core i7) 6並列で1サイクル4秒

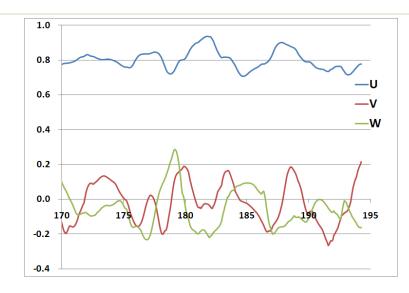
U Magnitud
1.187323
1
0.75
0.5
0.25
0

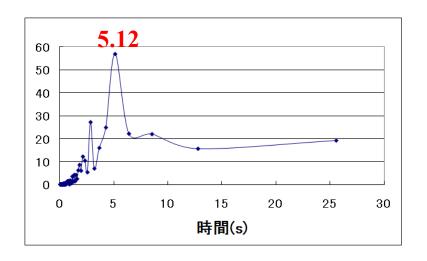

流速コンターの時間変化-Side View-

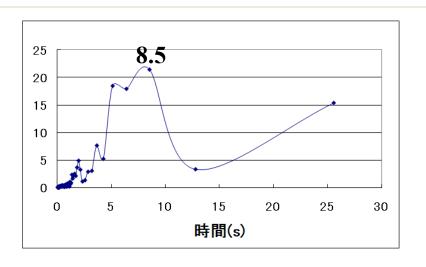

OpenFOAM2.1.1 による C_d 値

OpenFOAM2.1.1による C_d 値のFFT結果

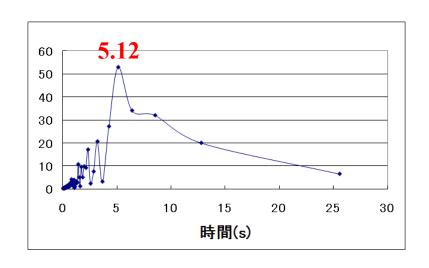
4.6.4. 球をすぎる流れ(Re=10⁴, メッシュ2)


速度ベクトルの時間変化-Side View-


- 左図に示した剥離角は精度の良いものではありません.
- 4/14 勉強会にて、S さんから"wallShearStress"を教えていただきました(まだ、トライできてません).


 \blacksquare Re=10⁴ (oneEqEddy)

4.6.5. 球をすぎる流れ(Re=10⁴, メッシュ2)

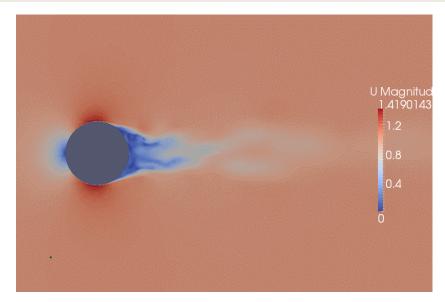


流速各成分の時間変動-位置(3.500)-

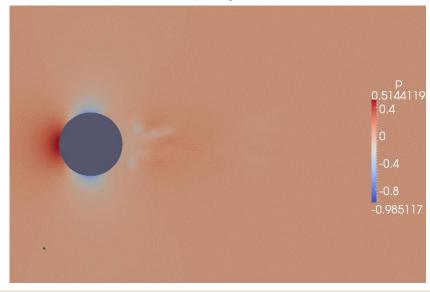
OpenFOAM2.1.1による流速x成分のFFT結果



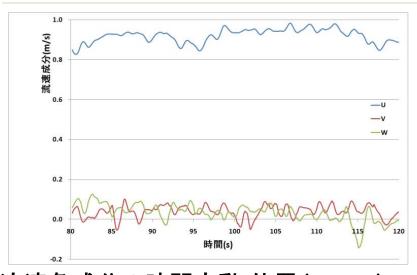
OpenFOAM2.1.1による流速y成分のFFT結果 OpenFOAM2.1.1による流速z成分のFFT結果


4.7.1. 球をすぎる流れ(Re=10⁶, メッシュ2)

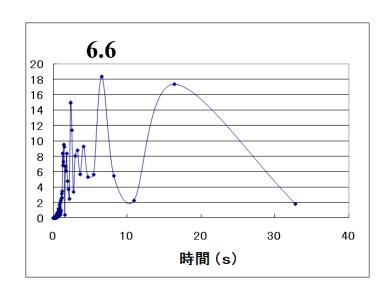
 C_d =0.104(F), 0.08~0.142(C/E)


Splart-Allmarasモデル(LES)

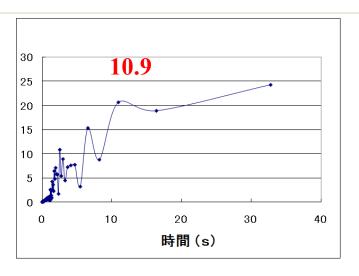
時間刻み 0.0004秒 (Xeon X5690) 6並列で1サイクル8秒

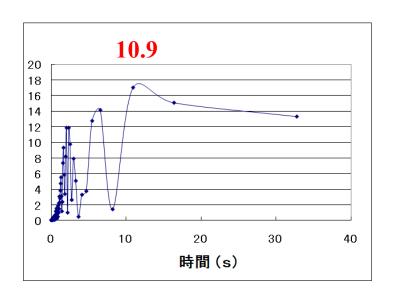


流速コンターの時間変化-Side View-



圧力コンターの時間変化-Side View-


4.7.2. 球をすぎる流れ(Re=10⁶, メッシュ2)


流速各成分の時間変動-位置(3.500)-

OpenFOAM2.1.0による流速y成分のFFT結果

OpenFOAM2.1.0による流速x成分のFFT結果

OpenFOAM2.1.0による流速z成分のFFT結果

$4.8.1. C_d$ 値と振動周期Tのまとめ-球をすぎる流れ-

OpenFOAM2.1.x による C_d 値および周期Tの比較.

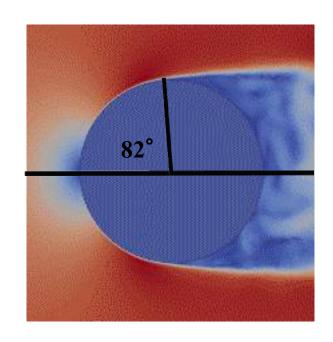
Re	$C_d(OF)^{*1}$	$C_d(FL)^{*2}$	$C_d(C/E)^{*3}$	T(OF)	<i>T(FL)*2</i>	$T(C/E)^{*3}$
100	1.091	1.087	1.087-1.096	-	-	-
300	0.658	0.661	0.656-0.671	8.19	7.52	7.30-7.46
500	0.565	_	_	3.4,8.2, <mark>6.8</mark> (u, v, w)	_	5.98
10^{4}	0.457*4	0.387	0.393-0.438	5.12(u, v), 5.85(w)	5.236	5.128-5.525
	0.432*5	0.444^{*6}	↑	8.5(u),5.12(v, w)	↑	↑
10^{6}	0.141*4	0.104	0.080-0.142	10.6,6.6, <mark>10.6</mark> (u,v,w)	20.84	0.77-20

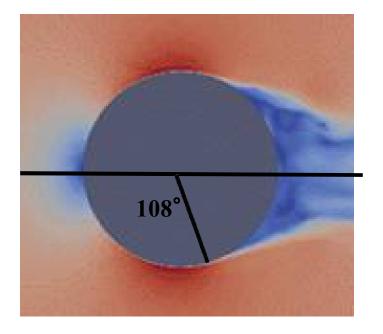
<u>注</u>

- *1 OpenFOAMによる解析値. Re=100以外は平均値.
- *2 FLUENTによる解析値.
- *3 C/E: 他文献による解析値あるいは実験値.
- *4 Spalart-AllmarasDDESモデル、*5 oneEqEddyモデル.
- *6 Utah州立大学による解析値.

$4.8.2. C_d$ 値と振動周期Tのまとめ-球をすぎる流れ-

OpenFOAM2.1.x による C_d 値および周期Tの比較.


Re	$C_d(OF)^{*l}$	$C_d(FL)^{*2}$	$C_d(C/E)^{*3}$	T(OF)	$T(FL)^{*2}$	$T(C/E)^{*3}$
100	1.091	1.087	1.087-1.096	-	-	-
300	0.658	0.661	0.656-0.671	8.19	7.52	7.30-7.46
500	0.565	_	_	3.4,8.2, <mark>6.8</mark> (u, v, w)	_	5.98
10^{4}	0.457*4	0.387	0.393-0.438	5.12(u, v), 5.85(w)	5.236	5.128-5.525
	0.432*5	0.444^{*6}	↑	8.5(u),5.12(v, w)	↑	↑
10^{6}	0.141*4	0.104	0.080-0.142	10.6,6.6, <mark>10.6</mark> (u,v,w)	20.84	0.77-20


- Re=100, 粗いメッシュであるが C_d 値は良く一致した.
- Re=300,50秒間の解析で振幅は小さいが周期は良く一致した.
- Re=500, wakeは生じており実測と一致した. 周期は実測より大きめであった.
- Re=104, 流速z成分が実測と良く一致した(Spalart-AllmarasDDESモデル).
- Re=104, 流速y&z成分が実測と良く一致した(oneEqEddyモデル).
- Re=106, C_d値は実測の範囲内である(Spalart-AllmarasDDESモデル).

4.8.3. 剥離角度⊕のまとめ-球をすぎる流れ-

OpenFOAM2.1.x による剥離角度 θ の比較.

Re	乱流モデル	$\theta (OF)^{*1}$	$\theta (FL)^{*2}$	θ (C/E)*3
10^4	Spalart-AllmarasDDES	82°	88.0±1°	85.0±1°, 86.5±1°
	oneEqEddy	83°	↑	↑
10^{6}	Spalart-AllmarasDDES	108°	121.0±2°	100°, 115°, 120°,120.0±2°

 \blacksquare Re=10⁴ (Spalart-AllmarasDDES)

 \blacksquare Re=10⁶ (Spalart-AllmarasDDES)