<u>OpenCAEシンポジウム2015</u> <u>(2015.11.28)</u>

高密度実装された電子機器内の 扁平曲がり部で発生する圧力損失特性の OpenFOAMを用いた分析

Pressure Drop Characteristics in Curved Rectangular Ducts with Change of Cross Sectional Area in High-Density Packaging Electronic Equipment using OpenFOAM

<u>* 小林 恒太</u>	学・岩手大学大学院
畑 陽介	ブラザー工業
福江 高志	正・岩手大学
廣瀬 宏一	岩手大学
日下部 文亮	岩手大学大学院
石川 博幸	ブラザー工業

本報告では,

<u>Ex. ノートパソコン etc.</u>

4. 評価手法: CFP 解析

解析コード	OpenEOAM Ver 2.3.1				
メッシュ生成	VINAS Pointwise Ver. 17.2				
ソルバー	simpleFoam (3次元定常解析)				
乱流モデル	k-ω SST				
流体	空気				
壁面条件	すべりなし				
計算回数	最大 5000 回				
境界条件					
流入境界	圧力 0 Pa 速度勾配なし				
流出境界	圧力勾配なし				

流量一定流出

4. 評価条件:A-partの幅の範囲

A-partの幅 b_A

$b_{\rm A}$ [mm]	50	100	150	200	250	300
$A_{\rm A}/A_{\rm B}$	1	2	3	4	5	6

 $A_{A}[m^{2}]$: A-part の断面積, $A_{B}[m^{2}]$: B-part の断面積

層流からの広範な範囲のデータを 分析するため,計8条件で検証.

$Q [\times 10^{-3} \mathrm{m^{3/s}}]$	0.5	1.0	1.5	2.0	2.5	3.0	4.0	5.0
$V_{\rm B}$ [m/s]	1	2	3	4	5	6	8	10
Re _B [-]	1100	2200	3300	4400	5600	6700	8900	11000

▶ Q [×10⁻³ m³/s]:流量,
 ▶ V_B [m/s]: B-part 出口のバルク平均流速

➢ Re_B: Reynolds数
B-part の水力等価直径を代表寸法に設定

$$\text{Re}_{\text{B}} = V_{\text{B}}d_{\text{B}} / v$$

V_B [m/s]: B-part のバルク平均流速 *d*_B [m]: B-part の水力等価直径 *v* [m²/s]: 空気の動粘度

数値解析の場合

実験の場合

 b_{A}

定常法:1秒間隔で1分間(60回)計測

▶ 圧力値の誤差の原因

- 解析モデルの角が実験装置よりも鋭い
 ⇒ 実験よりも渦による圧力損失を高めに見積もる
- 遷移領域における渦のモデル化が困難
 ⇒ 大小さまざまなスケールの渦が発生

▶ 圧力値の誤差の原因

 $A_{\rm A}/A_{\rm B}=1$ Re_B=11000

● 圧力の取得方法の違い

 ⇒ 解析は断面の平均圧力
 ⇒ 実験では4点の平均
 実験では完全に圧力を
 平均化できなかった

▶ 流れ場について

 $A_A/A_B=1$ Re_B=11000 $A_A/A_B=6$ Re_B=11000

● A_A/A_B=1…曲がる直前の速度が大
 ⇒ 曲がりにおける衝突の影響大
 ⇒ 曲がり部で発生する渦の非定常性が<u>強</u>

解析条件を $A_A/A_B=1$ に絞り非定常解析を実施

	定常解析	非定常解析	
ソルバー	simpleFoam	pimpleFoam	
乱流モデル	k-ω SST	k-ω SST	
流体	空気	空気	
壁面条件	すべりなし	すべりなし	
流量条件	$Q=10\times10^{-3} \text{ m}^{3}/\text{s}$ (Re _B =11000)		

	定常解析	非定常解析	
ソルバー	simpleFoam	pimpleFoam	
乱流モデル	k-ω SST	k-ω SST	
流体	空気	空気	
壁面条件	すべりなし	すべりなし	
流量条件	$Q=10\times10^{-3} \text{ m}^{3}/\text{s}$ (Re _B =11000)		

<u>単純な系 ⇒ 定常・非定常の使い分け</u>

▶ 扁平曲がり流路における圧力損失について実験と解析の 結果を比較し、以下の知見を得た.

(2) 乱流への遷移領域においては, **非定常解析を行ったほうが精度が向上する可能性** ⇒ 計算リソースや時間との相談が必要

(3) 流路内の乱れが強い場合や、大きな旋回流が発生する
 モデルにおいては曲がり後の渦構造が複雑化する.
 ⇒ 曲がり流路のような単純な系でも条件によって
 <u>定常・非定常を使い分ける必要</u>がある.

<u>...That's all.</u> <u>Thank you for your kind attention.</u>

高密度実装された電子機器内の 扁平曲がり部で発生する圧力損失特性の OpenFOAMを用いた分析

