2012/12/15

京コンピュータでのOpenFOAMの実装

清水建設(株) 技術研究所 ファム バン フック 菊池 浩利

■ 建設分野での課題

■ 京の概要

■ OpenFOAMベンチマーク結果の紹介

- 風圧予測
 - 建物外装材の設計
- 実験の課題
 - 時間とコスト

数値流体解析(CFD)の活用に よる建物風圧の予測は期待

Peak pressure coef. 27090 180 360 2700 Wind direction(degree) 負側のピーク値 W2 -2.0 1.5 -2.5 W1

•: A ○: B ■: C □: D

-2

-3

(菊池,2010)

CFDの解析-TSUBAMEで実施

S=1/250,粗度区分:III

建物近傍の計算格子

	モデル	鉛直(mm)	水平(mm)	メッシュー数
粗い	B*	0.25~100	6.25~50	3.3千万
	C *	0.25~100	3.125~25	1.32億

細かい

C*(1.32億格子)

中央断面風速・壁面風圧力のコンターの一秒間

風速のパワースペクトル密度

局部風圧の発生要因:平均流線

建物のピーク風圧の予測

- 数値流体計算の解析, 風洞実験と同等な結果
 - 数百億メッシュ規模の実施は必要
 - 大規模並列計算機の利用
- ■「京」コンピュータの活用
 - 10月, 産業利用開始
 - 計算コード: OpenFOAM,...,...

・理化学研究所に設置されたスーパーコンピュータ
・文部科学省の次世代スーパーコンピュータ計画の一環として、
理化学研究所と富士通が共同開発した。
・9月28日,学術・産業分野向けに本格共用稼働
・計算ノード82,944

Top 500, 現在

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	
1	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640	17590.0	27112.5	8209	
2	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM 2011/	1572864	16324.8 2011/	20132.7	7890 OP50	0 1位
3	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660	
4	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8162.4	10066.3	3945	J
5	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393216	4141.2	5033.2	1970	

「京」で採用されたCPU

第17回ビジュアリゼーションカンファレンス

SPARC64™ VIIIfx Chip 概要

FUĴITSU

20

Tofu: 3次元トーラスのネットワーク

21

コンパイラ環境: 富士通社製コンパイラ

- Fortran: ISO/IEC 1539-1:2004 (Fortran2003)
- C

1999年規格 "JIS X 3010:2003", "ISO/IEC9899:1999","JIS X 3010-1993"

"ISO/IEC 9899:1990"(C89規格)

■ C++:2003年規格 "JIS X 3014:2003"

"ISO/IEC 14882:2003"

OpenMP3.0(Fortran/C/C++)

MPI2.1

(Rikken,講習会資料,2012) 22

OpenFOAMのコンパイラ(自ら)

■ 大変だった.

コードの一部の修正が必要 コンパイラ …エラー… 計算 …エラー…

- OpenFOAMのGPU化の経験を活かして
- 実装バージョン
 - OpenFOAM-2.1.1
 - OpenFOAM-1.6-ext

検証対象:中規模市街地モデル

 ・非構造格子,1000万格子
 ・ソルバ: simpleFOAM (RNG, AMG)

Tofu ネットワークの特徴

- 1次元トーラス (84プロセス)

- 3次元トーラス (2x3x14プロセス)

赤の経路(たとえば1=2間)が、 他の通信の経路を利用する ため、性能が悪化します

領域分割による性能変化

(B)3次元分割(x) (C) 3次元分割(y)

領域分割による性能変化 (96並列)

検証対象: 2.大規模モデル

SnappyHexMesh格子, 1.32億格子
ソルバ: pisoFOAM (LES, AMG)

計算格子: SnappyHexMeshメッシュ

ご清聴ありがとうございました。