OpenFOAMを用いた噴霧モデルの検討

岡山県立大学情報工学部芝 世弐

Situation

Diesel engines have been used for ships and big cars.

Recently contributing global warming, Diesel engines for small cars are paid attention, especially in Europe.

Diesel engines are expected to be more clean and efficient.

Background

High pressure injection for clean exhaust gas

Phenomenon

Rebounding Splashing Jet Adhesion

Influence

Increasing ignition relay time Forming soot and unburned HC

Impingement Wall

By numerical simulation , evaluating spray model and searching phenomenon

Procedure

Evaluating <u>breakup model</u>

Evaluating <u>wall model</u>

Calculation condition 1

Ambient pressure	2.6 MPa
Ambient temperature	573 K
Wall temperature	373 K
Fuel temperature	297 K
Injection pressure	135 MPa
Ambient density	16 kg/m ³
Nozzle diameter	0.15 mm
Injection fuel mass	20 mg
Injection duration	1.5 ms × 2
Spray cone angle	15 °
Impingement distance	50 , 60 mm
Fuel	IDEA , Diesel

IDEA= n-decane70%+ -methyl-naphtalene30%

3D Calculation model

ETAB model

Deformation length y

Distortion parameter x =

Oscillated and distorted droplet is described by damped-mass equation

 $m\ddot{x} + b\dot{x} + cx = F$

Breakup occur

x(t) > 2

$$12 < We_g < 100$$

Bag breakup

2y

Stripping breakup

Reitz KHRT breakup model

Kelvin-Helmholtz instability

 $3.726B_1r$ $au_{K\!H}$ $\Omega_{_{KH}}$ KH

 $L_b = C_b d_0_1$ g

Kelvin-Helmholtz instability

Rayleigh-Taylor instability

1.0 τ_{RT} Ω_{RT}

Reitz Diwakar breakup model

 $6 < We_g < 0.5 \sqrt{\text{Re}_g}$

Bag breakup

$$0.5\sqrt{\operatorname{Re}_g} \leq We_g$$

Stripping breakup

Spray tip penetration

Spray shape at 2.1ms after start of injection

Spray shape at 2.1ms after start of injection

breakup model In this calculation condition ReitzDiwakar ,ReitzKHRT and ETAB breakup models were good agreement with experimental result about tip penetration.

ReitzDiwakar and ReitzKHRT breakup models were good agreement with experimental result about spray shape.

ETAB breakup model was bad agreement with experimental result about spray shape.

Reflect model

Rebound Elastic coefficient 0.9

BG model

0.179

Observation points of sauter mean diameter , velocity

Droplet velocity vector

15.0

10.0

5.0

0.0

Droplet velocity vector

10.0

15.0

[m/s] 20.0

5.0

0.0

Local droplet velocity vector

<u>BG model</u>

Reflect model

e=0.9

	е
30°	0.37
60 °	0.298
90°	0.179

	е
30°	0.99
60°	0.98
90°	0.97

<u>WW model</u>

Axial droplet velocity at 2.1ms after start of injection

Sauter mean diameter at 2.1ms after start of injection

wall model

In this calculation condition

BG and WW models were better agreement with experimental results than Reflect model about local Sauter mean diameter and droplet mean velocity.

