
NIIGATA UNIVERSITY

オープンソース可視化ソフトウエアのための高速並列リーダコードの開発

OpenFOAM native reader for ParaView 3

大嶋拓也(新潟大学)

1/21

NIIGATA UNIVERSITY

自己紹介

新潟大学工学部建設学科　建築学コース

所属

建築音響学 (音響数値解析)

所属学会

日本建築学会、日本音響学会、日本流体力学会、日本騒音制御工学会

専門

2/21

NIIGATA UNIVERSITY

開発動機(1)

・WindowsベースのCAE演習用教材の製作

　　- OpenFOAM (Cygwinベース) + ParaView (Windowsネイティブ)

・OpenFOAM付属のParaView (当時はParaView2)用リーダ

　　- OpenFOAMライブラリに依存

　　- CygwinライブラリとWindowsネイティブ(MSVC++)ライブラリは非互換

3/21

NIIGATA UNIVERSITY

開発動機(2)

・Windows上でParaViewからOpenFOAMデータを読み込むための選択肢

　　1. foamToVTK

　　　　◯: プログラミング不要

　　　　×: データ変換の手間と容量、解析上のタイムステップ情報が失われる

　　2. ParaViewをCygwin上でビルド、OpenFOAMライブラリとリンク

　　　　×: 非現実的(無理でした)、性能が貧弱(特にI/O)

　　3. OpenFOAMライブラリに依存しない(ネイティブ)リーダコードを作成

　　　　◯: ParaView単体で動作、全てを開発者の好みで作成できる

　　　　×: 開発労力、実現可能性

演習用教材以上の発展も見越して、3.のネイティブリーダ開発に決定

4/21

NIIGATA UNIVERSITY

Introduction

 ParaView does efficient rendering even for large (> 10 million cells) cases

 It’s I/O performance that defines user experience in real situations

 We want a fast reader for OpenFOAM!

 NB: The following explanations about the reader implementation is not meant to

be exhaustive. Please consult the actual source code for details.

5/21

NIIGATA UNIVERSITY

Server Process 1

VTK Pipeline
(Filters)

Parallel Reader

Parallel Renderer
Server Process 0

ParaView server-client model

GUI (Client)

VTK Pipeline
(Filters)

Parallel Reader

Multi-Piece
Data

GUI View (Client)

Parallel Renderer

Multi-Piece
Data

Server Process N

VTK Pipeline
(Filters)

Parallel Reader

Parallel Renderer

Multi-Piece
Data

6/21

NIIGATA UNIVERSITY

Piece treatment in the reader

processor0

Case
Directory

processor1

processor4

Each processorX
subdirectory is read

as a piece

Reader Process 0
processor2

Sub-reader 0

Sub-reader 1

Reader Process 1

Sub-reader 0

Sub-reader 1

processor3

Sub-reader 2

Each piece is assigned to a reader
process by an interleaved way (blindly
following The ParaView Guide)

7/21

NIIGATA UNIVERSITY

Server Process

ParaView reader request sequence (outline)

GUI (Client)

Reader Creation

SetFileName()

RequestInformation()

File - Open

Metadata

Apply RequestData()

Request

Request

VCR Play

Output
Pipeline

GUI Panel

Ti
m

el
in

e

RequestData()
Request Output

Pipeline

8/21

NIIGATA UNIVERSITY

Processing information request

Output metadata

 Number of data pieces

 Number of timesteps

 List of timesteps

 List of boundary patches

 List of cell/point/lagrangian arrays

 Collect metadata to server process 0 (the only interprocess communication)

Input information

 Number of server processes

 My process number

List time directories

Count the number of processorX subdirectories

Obtain from polyMesh/boundary file

List field objects under a time directory

Determine which processorX subdirectories to read

RequestInformation()

9/21

NIIGATA UNIVERSITY

Processing data request: Overview

RequestData()

Mesh Data Acquisition

Mesh Construction

Field Data Acquisition

Cell-to-Point Filtering

FoamFile Parser

 Implementation details follow

10/21

Append Dataset Pieces vtkAppendCompositeDataLeaves

NIIGATA UNIVERSITY

Processing Data Request: FoamFile Parser

FoamFile Parser

 Dedicated parser that handles C-like syntax of OpenFOAM file format

 Covers many undocumented exceptional syntaxes

 Directly interacts with zlib for gzip-compressed format support

 Hijacks crc32() by an empty dummy function when possible (+5% performance)

 Uses own string-to-float conversion routine as a replacement to system strtod()

 The key part that defines the reader performance for ascii cases

 Fast!

 Omits overflow/underflow handling

 Not meant to be accurate until the last bit of mantissa

 ... but proven to be reasonably accurate for postprocessing purposes

11/21

NIIGATA UNIVERSITY

Processing Data Request: Mesh construction (1)

Mesh Construction

 Convert OpenFOAM face-oriented polyMesh data structure to VTK cell-oriented

unstructured grid

 The key part that determines initial case loading time

Point #0 Point #1 Point #2Cell #0
Owner Cells

Cell #1
Cell #2

Cell #0
Neighbour Cells

Cell #1
Cell #2

Face-Points

Point #0 Point #1 Point #2 Point #3
Point #0 Point #1 Point #2

0
1
2

Face number

1. OpenFOAM polyMesh format

12/21

NIIGATA UNIVERSITY

Processing Data Request: Mesh construction (2)

2. Create intermediate cell-face list from owners and neighbours

Face #0 Face #1 Face #2
Cell-Faces

Face #0 Face #1 Face #2 Face #3
Face #0 Face #1 Face #2

0
1
2

Cell number

3. Create ordered cell-point list (VTK unstructured grid)

Point #0 Point #1 Point #2
Cell-Points

0
1
2

Cell number

Point #3
Point #0 Point #1 Point #2 Point #3 Point #4
Point #0 Point #1 Point #2 Point #3

13/21

NIIGATA UNIVERSITY

Processing Data Request: Mesh construction (3)

Creation of cell-point list from cell-face/face-point list (a rough sketch)

0 1

23

4 5

7 6

Face 0

Face i a. Search for face i that does not share
any of its vertices with Face 0

b. Search for a pivot point which is the
opposite point of the edge that starts from
point 0 of face 0 and that does not belong
to face 0

0 1

2

3

Face 0

Hexahedron and prism:

Tetrahedron and pyramid:

a. Search for a point that does not belong
to face 0

14/21

NIIGATA UNIVERSITY

Processing Data Request: Cell-to-point filtering

Cell-to-Point Filtering

 Does roughly what volPointInterpolation in OpenFOAM does or what

vtkCellDataToPointData in VTK does

 The filter stands at the middle of the two from accuracy point of view:

 Does not do inverse distance weighting (following vtkCellDataToPointData)

 Saves extra memory required to hold weighting factors

 Saves extra computational load to do IDW

 Does account for boundary values (following volPointInterpolation)

 Overrides filtered values at boundary points by boundary values

 Also accounts for all neighboring boundary values at patch-edge points

15/21

NIIGATA UNIVERSITY

Timing tests (1): Setup

Testing environment

 Mac Pro 3.0 GHz 4-core, 16GB RAM 1.0TBx3 RAID0, OS X 10.5.5

 OpenFOAM 1.5.x OS X Port 2008-10-08

 ParaView 3.5-CVS 2008-11-11

Timing instrument

 “Tools” -> “Timer Log”

Enabled fields

 p, U

16/21

Not an officially supported platform of OpenFOAM, take as a rough
indication. Also note the benchmarks are meant to show difference in design
philosophies, not to judge absolute technical superiorities.

NIIGATA UNIVERSITY

Timing tests (2): Simple serial case

Parallelepiped geometry meshed with tetrahedra

File format: Gzipped-Ascii

Case type: Serial case

Number of cells: 773,543 cells

(4.8x)
(3.6x)

17/21

NIIGATA UNIVERSITY

Timing tests (3): Parallel case

Parallelepiped geometry meshed with hexahedra

File format: Gzipped-Ascii

Case type: Serial / parallel-decomposed cases

Number of cells: 1,291,208 cells

18/21

Decomposed

NIIGATA UNIVERSITY

Timing tests (4): Parallel large case

19/21

Parallelepiped geometry meshed with hexahedra

File format: Gzipped-Ascii

Case type: Parallel-decomposed case

Number of cells: 12,150,000 cells

 (about 10x of the previous case)

NIIGATA UNIVERSITY

Summary and future works

Summary

 Implemented an OpenFOAM parallel reader for ParaView

 Found to be 3x – 7x (typically 4x – 5x) faster than PV3FoamReader in serial

 Parallel tests showed 2.6x – 3.2x speedup for 4 processors

Future works

 Make the reader a part of official ParaView/VTK distribution (involves politics)

 Geometry filter optimization (rather a matter of ParaView itself than the reader)

20/21

NIIGATA UNIVERSITY

Thanks for listening!

The reader code is available at
http://openfoamwiki.net/index.php/Contrib_Parallelized_Native_OpenFOAM_Reader_for_ParaView

21/21

