SalomeMecaによる構造解析(線形・非線形)の紹介

- 1. 自己紹介
- 2. SalomeMecaの概要
- 3. SalomeMecaでできること(確認した項目)
- 4. 具体的実施例の紹介
- 5. 解析結果(非線形・動解析)の事例
- 6. まとめ
- 7. 付録(Code_Asterのコマンドリスト)

2011/06/25 アンデン(株) 藤井 成樹

所属: アンデン(株) 第1技術部 DE開発

業務内容: CAE開発、活用が目的。 CAE解析内容は、構造解析(動解析、非線形含む)、電場、磁場、音場、熱流、流体解析など様々。

<私とCAE解析との関わり>

内を本格的に利用

2. SalomeMecaの概要

PrePostのSalomeにsolver(Code_Aster)をマウントしたもの。 Code_Asterは、基本的に構造解析(線形、非線形(接触、塑性)、動解析が可能)用で、 フランスの電力公社で開発。実力は、商用ソフトに匹敵。 現在もバージョンアップが繰り返されている。

> 柴田先生のサイトに日本語訳が掲載されている http://opencae.gifu-nct.ac.jp/pukiwiki/index.php?SALOME-Meca%BE%D2%B2%F0

THE ENERGY CHAN

Code Aster Analysis of Structures and hermomechanics for **Studies & Research**

3. SalomeMecaでできること(確認した項目)

(SalomeMeca2007.1~2009.1で確認)

区分	No.	解析内容
線形	1	単一材料の構造解析
	2	特性が異なる複合材料の構造解析(節点を共有する、しない)
	3	熱応力(線膨張係数の異なる材料で構成されたモデルが温度変化し たときに発生する応力)
	4	熱流解析(熱流束W/m ² を与えたときの温度分布)
非線形	5	接触解析(摩擦あり、摩擦なし)
	6	弾塑性解析
	7	接触と弾塑性解析
	8	非線形の熱応力(はんだの塑性ひずみ)
動解析	9	モーダル解析(共振周波数、共振モード)
	10	周波数応答(減衰あり、なし)
	11	過渡解析(時刻歴応答)
連成	12	熱-構造の連成解析(4、2の連成解析)
連携	13	熱解析の結果(温度分布)をファイルに出力し、この結果を読み込ん で構造解析

4-1. 解析手順

4-2. Geometryモジュール(モテル読込 グループ化)

6/11

4-3. Meșhモジュール (メッシュ作成)

メニューパーの「Mesh」「Create Mesh」を選択し、「Assign a set of hypotheses」をクリック

- ·3D extrusion
- Projection 3D
- Radial Prism 3D

が選択できる。

細かい箇所は、細かく切ることも可能

Meshモードでメッシュ作成する

4-4. Asterモジュール(解析コート作成 解析)

4-5. その他の境界条件(変位・荷重)、その他解析(非線形など)

境界条件のコート

AFFE_CHAR_ME	CA	境界条件の設定 (構造解析)
変位の設定	DDL_IMPO GROUP_MA GROUP_NO DX,DY,DZ	変位の設定 体積、面、線のグループ名に設定 点のグループ名に設定 変位の方向を設定
荷重の設定	FOACE_NODALE FOACE_ARETE FORCE_FACE FORCE_INTERNE TOUT GROUP_MA GROUP_NO FX,FY,FZ	点荷重の設定(一点当たりの荷重) 線荷重の設定(単位長さ当たりの荷重) 面荷重の設定(単位面積当たりの荷重) 体積荷重の設定(単位体積当たりの荷重、密度にすると自重を設定) 全てのモデルに設定 体積、面、線のグループ名に設定 点のグループ名に設定 荷重の方向を設定
面圧の設定	PRES_REP GROUP_MA	圧力の設定(面に垂直に働く圧力) 面のグループ名に設定
連結 こ(変形の 条	LIAISON MAIL の部分の設 件の設定か	土の連結(結合) 定を変更することで、各種境界 い。 で前能になる。
~	DX, DY, DZ	規制する方向を定義。全方向規制:変形しない(形状を保つ)
接触の設定	CONTACT METHOD APPARIEMENT RECHERCHE PROJECTION GROUP_MA_MAIT GROUP_MA_ESCL	部品同士の接触 解を求める方法を設定 解の予測方法を設定 接触する本体側の面を設定 接触する部品の面を設定

解析用のSolver(確認したsolver)

Solver名	内容
MECA_STATIQUE	線形構造解析
STAT_NON_LINE	非線形構造解析
DYNA_LINE_HARM	周波数応答解析
DYNA_LINE_TRAN	時刻歴応答
THER_LINEAIRE	線形温度解析

その他各種solverあり

解析するsolverを変更することで、各種解析 が可能になってくる。

5. 解析結果(非線形・動解析)の事例

6. まとめ

SalomeMecaは、GUIで操作でき、直感的に理解できる。 通常の構造解析(線形・非線形)であれば、解けてしまう実力を持っている。 解析用solver(Code_Aster)のドキュメントは、500MBに及び、 今回紹介した事例はホンの一部。(solverは多数あり) 根気と時間を掛ければ、無限の可能性が広がる。 ネックは、言葉。 基本的にドキュメントの類は、フランス語。 フランス語のドキュメントを英語に機械翻訳したドキュメント(500MB)があり、 これを参考にして解読した。 機械翻訳のため、インデントがずれて読みにくい。

< SalomeMecaのその他の利用(メッシャとして利用) >

SalomeMecaのグループ化(face、volumeをグループ化)の機能を利用して、メッシュを切り UNV形式で保存することで、グループ化されたメッシュファイルが出来上がる。 UNV形式をFOAM形式に変換することで、Salome側で定義したface名、volume名が OpenFOAM側に受け継がれ、patch名やfaceZone、cellZone(及びfaceSet、cellSet) を名前付きで読み込むことができる。

SalomeMecaをOpenFOAMのメッシャとして利用できる。

今は、この利用が多い。

7. 付録(Code_Asterのコマンドリスト)

Code Aster コマンドリスト

1/6

Code-Aster コマンドリスト

目次

1. 定義	
DEFI_FONCTION	関数の定義
DEFI_LIST_REEL	データ定義
DEFI_MATERIAU	材料の定義
MACRO_MATR_ASSE	マトリックスの定義
2. 作成	
CREA_CHAMP	Field 作成
LIRE_RWESU	結果の読み込み
3. 設定	
AFFE_CHAR_MECA	境界条件の設定
AFFE_MATERIAU	材料の設定
AFFE_MODELE	モデルの設定
CALC_VECT_ELEN	ベクトル(変動負荷)の設定
ASSE_VECTEUR	ベクトル(変動負荷)を計算
4. ## (Solver)	
MECA_STATIQUE	線形構造解析の Solver
STAT_NON_LINE	非線型構造解析の Solver
DYNA_LINE_HARM	層波数応答解析の Solver
DYNA_LINE_TRAN	時刻歴応答解析(動解析)の Solver
THER_LINEAIRE	線形温度解析の Solver

DEFI_FONCTION		関数の定義	
間数定義 y=f(x)	NOM_PARA INST EPSI NOM_RESU SIGM VALE	パラメータ名(X軸) 直接入力 ひずみをパラメータとする。 結果の名前(Y軸) 応力をパラメータから計算する。 関数の値を入力	
DEFI_LIST_REEL		データ定義	
データ定義	DEBUT INTERVALE JUSQU_A NOMBER PAS	初期値 データ関隔 最終値 分割数を指定 データ関隔で指定 分割数=(JUSQU_A - DEBUT) / PAS	
DEFI_MATERIAU		材料の定義	
弹性	ELAS E NU ALPHA	弾性の特性値を定義する。 ヤング率 ポアソン比 線膨張保数	

Code Aster コマンドリスト

RHO	密度
AMOR_ALPHA	粘性滅衰保数:運動速度に対する
AMOR_BETA	粘性滅喪保数:ひずみ速度に対する
THER	温度の特性値を定義する
LAMBDA	熱伝導率
TRACTION	特性値を DEFI FONCTION で定義した関数に置き換える。
SIGM	応力は、定義した関数で求める。

2. 作成

CREA_CHAMP		Field作成	
Field の定義	TYPE_CHAN NOEU_TEMP_R	Field を定義 節点温度として定義する	
Fieldの設定	AFFE TOUT NON_CMP VALE	Field を設定 モデルの全てに設定 Field の名称 Field に設定する値	
LIRE_RESU		結果の読み込み	-
	TYPE_RESU FORMAT NODELE UNIT FORMAT_MED NOM_CHAM NOM_CHAM_MED TOUT_ORDER	結果のタイプ 結果のフォーマット 結果を DEF1_MODELE で定義したモデルに設定する ユニット数 MED フォーマットで 読み込むデータの名称 読み込むデータの項目名	

AFFE_CHAR_MECA		境界条件の設定(構造解析)	
変位の設定	DDL_IMPO GROUP_MA GROUP_NO DX, DY, DZ	変位の設定 体積、面、線のグループ名に設定 点のグループ名に設定 変位の方向を設定	
荷重の設定	FOACE_NODALE FOACE_ARETE FORCE_FACE FORCE_INTERNE TOUT GROUP_MA GROUP_NO FX,FY,FZ	点荷重の設定(一点当たりの荷重) 線荷重の設定(単位長さ当たりの荷重) 面荷重の設定(単位両積当たりの荷重) 体積荷重の設定(単位体積当たりの荷重) 全てのモデルに設定 体積、面、線のグループ名に設定 点のグループ名に設定 荷重の方向を設定	
面圧の設定	PRES_REP GROUP_MA	圧力の設定(面に垂直に働く圧力) 面のグループ名に設定	
連結	LIAISON_MAIL GROUP_MA_MAIT GROUP_MA_ESCL	部品同士の連結(結合) 本体の部品(Volume) 小さい部品の接着面(Face)。接着面が本体からはみ出ない。	
変形の規制	LIAISON_UNIF GROUP_NA DX, DY, DZ	定義したグループの変形を規制する 変形を規制するグループ名を定義 規制する方向を定義。全方向規制:変形しない(形状を保つ)	

2/6

付 2/3

Code Aster コマンドリスト

ASSE_VECTEUR		変動負荷(ベクトル)の計算
変動負荷を計 算	VECT_ELEN NUME_DOL	CALC_VECT_ELEM で設定した変動負荷

RECA_STATIQUE		線形構造解析を実行	
Eデル	MODELE CHAM_MATER	モデルを設定 AFFE_MATERIAUで設定した材料を設定	
意界条件	EXCIT CHARGE	境界条件を設定 AFFE_CHAR_MECA で設定した境界条件を設定	
TAT_NON_LINE		非線型構造解析を実行	
モデル	MODELE CHAM_MATER	モデルを設定 AFFE_MATERIAUで設定した材料を設定	
角界条件	EXCIT CHARGE FONC_MULT	満界条件を設定 AFFE_CHAR_MECAで設定した境界条件を設定 境界条件の倍率を DEF1_FONCTION で定義した関数で変化させる。	
非線型の計算 方法	COMP_ELAS DEFORMATION TOUT COMP_INCR RELATION VMIS_ISOT_TRAC DEFORMATION SMALL PETIT PETIT_REAC GREEN SIMO_MIEHE INCREMENT LIST_INST NEWTON REAC_INCR MATRICE PRIDICTION TANGENT REAC_ITER 0 or 1 CONVERGENCE RESI_GLOB_RELA ITER_GLOB_RELA ITER_GLOB_RELA ITET_GLOB_RELA ITET_GLOB_RELA ITET_GLOB_MAXI ARCHIVAGE PAS_ARCH LIST_INST ARCH_ETAT_INIT CHAM_EXCLU VARI_ELGA	 弾性変形の関係を指定 変形を指定(大変形の(吸小剤)) モデル全体に指定(省略可) 塑性変形の関係を指定 関係 フォンミーゼスの等方硬化則 変形を指定 教小変形(ひずみが5%以下の場合)) 接触問題ではPETITを選択である(政束が早い) 微小変形(ただし、大変形の近似として使用可能。大変形と する時は、各ステップを非常に小さい間隔にする) 微小変形、大回転(塑性変形の場合)) 計算間隔を設定 DEF1_LIST_RELで設定した間隔で計算させる ニュートン法で計算させる 解の予測方法を指定 tangentで予測 各 Iteration step における予測 1:予測した値に置き換える(収束が早くなる) 収束に関する設定 ここで服定した回数まで計算させる 	
DYNA_LINE_HARM		周波数応答解析を実行	

3/6

接触の設定	CONTACT METHOD APPARIEMENT RECHERCHE PROJECTION GROUP_MA_MAIT GROUP_MA_ESCL	部品同士の接触 解を求める方法を設定 解の予測方法を設定 接触する本体側の面を設定 接触する部品の面を設定
温度の設定	TEMP_CALCULEE	REA_CHANPで定義した温度Fieldで線膨張を計算する。 古いコマンドなので使用を控える。替わりに AFFE_MATERIAU/AFFE_VARCを使用する。
AFFE_CHAR_THE	i l	境界条件の設定(温度解析)
境界条件 GROUP_MA TEMP FLUX_REP GROUP_MA FLUN		温度を設定 定義したグループ名に温度を設定 温度の値を入力 熱流を設定 定義したグループ名に熱流を設定 熟流量の値を入力
AFFE_MATERIAU		材料の設定(定義した材料をモデルに設定する)
材料の設定	AFFE TOUT GROUP_MA MATER	DEFI_MATERIAUで設定した材料をモデルに設定 モデル全体に設定 体績のグループ名に設定 DEFI_MATERIAUで定義した材料を設定
変数を設定	AFFE_VARC CHAMP_GD NOM_VARC VALE_REF	新たな変数を設定 CREA_CHAMPで設定した変数(Field)を指定 Fieldの名称 参照する値(Fieldが温度の場合は参照温度)
AFFE_MODELE		モデルの設定
モデル	AFFE TOUT PHENOMENE MODELISATION	設定 全てを対象 現象を設定(THERMAL or MECANIQUIE) モデル(2D or 3D)
MACRO_MATR_ASS	Æ	マトリックスの設定
モデル	MODELE CHAM_MATER	モデルの設定 材料の設定
	CHARGE NUM_DDL	境界条件を設定
マトリックス の設定	MATR_ASSE MATRICE OPTION RIGI_MECA MASS_MECA AMOR_MECA	マトリックスを設定 マトリックス名を定義 マトリックスの種類を設定 剛性(ばね)マトリックス(構造解析用) 賃量マトリックス(構造解析用) 減表マトリックス(構造解析用)
CALC_VECT_ELEM	l	変動負荷(ベクトル)の設定
変動負荷を設 定	OPTION CHAR_MECA CHARGE	変動負荷の境界条件 構造解析の境界条件を変動負荷として設定 変動負かとする境界条件を指定

Code Aster コマンドリスト

4/6

付 3/3

6/6

Code Aster コマンドリスト

5/6

周波数応答	MATR_MASS MATR_RIGI NATR_AMOR LIST_FREQ EXCIT VECT_ASSE COFE_MULT	MACRO_MATR_ASSEで定義した質量マトリックス名を設定 MACRO_MATR_ASSEで定義した耐性(ばね)マトリックス名を設定 MACRO_MATR_ASSEで定義した成長マトリックスを設定 DEFI_LIST_REELで設定した周波数開隔で計算する 計算する内容を設定 ASSE_VECTEURで設定した変動負荷で計算する 負荷させる負荷の保数
DYNA_LINE_TRAN		時刻歴応菩解析(動解析)を実行
モデル	MODELE CHAM_MATER	モデルの設定 材料を設定
時刻歷応答	NATR_MASS NATR_RIGI NATR_AMOR NEWMARK DELTA EXCIT CHARGE INCREMENT LIST_INST	 第量マトリックスを設定 線性マトリックスを設定 減渡マトリックスを設定
THER_LINEAIRE		線形温度解析を実行
	NODELE CHAM_MATER EXCIT CHARGE	モデルの設定 材料を設定 境界条件 設定し他境界条件セット

Code Aster コマンドリスト

RESULTAT	: XYZ 方向の <u>変</u> 位を出力
NOM_CHAM	DEPL
NOM_CMP	DX,DY,DZ ここで方向を指定
RESULTAT	 :相当歪を出力
NOM_CHAM	EQUI_NOEU_EPSI
指定せず	節点解がそのまま使える
RESULTAT	:相当応力(弹性解析)
NOM_CHAM	EQUI_NOEU_SIGM
指定せず	節点解がそのまま使える
RESULTAT	:相当応力(弹塑性解析)
NOM_CHAM	EQUI_NOEU_SIGM
NOM_CMP	VMIS ここで計算方法を指定
0.000000000000000000000000000000000000	例は、フォンミーゼス応力を指定
RESULTAT	: (周波数応答)
NOM_CHAM	ACCE 加速度の場合
NOM_CHAM	VITE 速度の場合
NOM_CHAM	DEPL 麦位の場合

	all a street
1 .	100 11
	10 m m m m m m m m m m m m m m m m m m m

CALC_ELEM		夏素解を求める
モデル	MODELE CHAM_MATER	モデルを設定 AFFE_MATERIAUで設定した材料を設定
結果	RESULTAT OPTION EPSI_ELNO_DEPL EQUI_ELNO_SIGM EQUI_ELNO_EPSI	定義した solver の名称 求める要素解 要素の変位 要素の応力 要素のむずみ
CALC_NO		節点解を求める
結果	RESULTAT OPTION EPSI_NOEU_DEPL EQUI_NOEU_SIGM EQUI_NOEU_EPSI	定義した solver の名称 求める節点解 節点の変位 節点の応力 節点のひずみ
IMPR_RESU		結果を出力
出力	FORMAT MED UNIT RESU RESULTAT NOM_CHAM NOM_CMP	出力形式 MED フォーマットで出力 桁数を指定 出力項目を指定 定義した solver の名称 出力項目名を指定 出力項目の計算方法を指定 以下が設定した例