

大規模数値解析による 流体力予測精度向上方法の追求

工学院大学 工学部 機械工学科 流体工学研究室 古西 良

- 1. 研究背景
- 2. 本年度の目標
- 3. 使用システム
- 4. 使用ソフトウェア
- 5. 事例1(船舶の抵抗係数解析)
- 6. 事例2(要素数約1億の抵抗係数解析)

数値解析の現状

工学院大学 流体工学研究室では、大企業レベルの解析は 出来なくとも、中小企業を超える解析のリソースを持っ ている。しかし、これを超えられない原因は、研究室に 技術や経験がないからである。この事から、研究室のリ ソース全てを用いて行う事が出来るノウハウ等を追及す る必要がある。

PRIMEHPC FX10

OpenCAE勉強会 岐阜

メッシュの重要性

正確な解析を行うため には細かいメッシュ、 直交性と形状の良さが 要求されるが、PCの 能力を考慮して収束ま でに掛かる時間に注意 する事も重要である。

本年度の目標

一般に、1コアで10⁶メッシュの解析を行えると 言われている。この事から、本研究室で使用でき る最大コア数192(東京大学 Oakleaf-FX)を元に、10⁸ オーダーのメッシュ数における解析を行うことを 目指す。目標は以下の通り。

- 10⁸オーダーメッシュを生成する。
- 10⁸オーダーメッシュの解析を行う。
- 10⁸オーダーメッシュの可視化を行う。

使用したシステム

各プロセスで使用したシステムは以下の通り。

	メッシュ生成 可視化用PC	解析サーバー		
CPU	Intel Core i7 3.07GHz	船舶	$ \frac{\text{Intel Xeon X5500}}{(2.93 \text{GHz})} \} \times 2 $	
(クロック数)		車両	SPARC64 Ixfx (1.848GHz)	
使用可能メモ リ	24GB	船舶	48GB	
		車両	348GB	

Pointwise

流体解析用メッシュ ジェネレーター Pointwiseを使用した。 先代Gridgenの機能に加 え、高品質な境界層レ イヤを簡単に生成する 事等が可能と成ってい る。 また、OpenFOAM等の オープンソースソルバ にも対応している。

引用元:http://www.vinas.com/jp/seihin/gridgen/jirei/037.html ~

Fieldview

流体解析可視化ポスト プロセッサ FieldView は、流体解析業務の効 率化を推進する可視化 評価システムである。 こちらもOpenFOAM等 のオープンソースに対 応している。

引用元:http://www.vinas.com/jp/seihin/fieldview/jirei/040.html

事例1(船舶の抵抗係数解析)

解析対象と抵抗係数の参考値は、以下の船舶3種類 である。 KRISO Container Ship (KCS): 3.5 × 10⁻³

Modified KRISO Tanker (KVLCC2M): 3.5×10^{-3}

US Navy Combatant, DTMB 5415: 4.2×10^{-3}

解析格子例

US Navy Combatant, DTMB 5415

KRISO Container Ship (KCS)

Modified KRISO Tanker (KVLCC2M) 10

2013/2/26

OpenCAE勉強会 岐阜

Fluid Engineering Laboratory, Kogakuin University

KRISO Container Ship (KCS): 0.0035

Modified KRISO Tanker (KVLCC2M) 0.0035

US Navy Combatant, DTMB 5415:0.0042

10-4オーダー迄合致し、 本解析は成功した。

2013/2/26

NGINEER OUR FUTU

船舶3種の圧力分布

U=2.197m/s

OpenCAE勉強会 岐阜

Fluid Engineering Laboratory, Kogakuin University

事例2(自動車周辺の流体解析)

解析対象は以下の車体「Audi TT」、抵抗係数の参考値は Cd=0.3である。解析に使用したFX10 (Oakelaf-FX)には OpenFOAM-2.1.0がプリインストールされている。 本解析では30m/sでの走行を想定した。

解析格子(1/2)

Pointwiseを用いて、以下の様なテトラ構造格子を1 億2000万生成した。

NGINEER OUR FUTU

解析格子 (2/2)

INGINEER OUR FUTUR

各種境界条件

	境界条件				
各種境界		k	omega	р	u
流入口	type	fixedValue;	fixedValue;	zeroGradient;	fixedValue;
	vallue	\$internalField;	\$internalField;		uniform
流出口	type	inletOutlet;	inletOutlet;	fixedValue;	inletOutlet;
	inletValue	\$internalField;	\$internalField;		uniform (0 0 0);
	value	\$internalField;	\$internalField;	\$internalField;	\$internalField;
仮想風洞	type	slip	slip	slip;	slip;
	value				
路面	type	kqRWallFunctio n;	omegaWallFunct ion;	zeroGradient;	fixedValue;
	value	\$internalField;	\$internalField;		uniform
車体	type	kqRWallFunctio n;	omegaWallFunct ion;	zeroGradient;	fixedValue;
	value	\$internalField;	\$internalField;		uniform

fvSchemes

ddtSchemes	l I I	laplacianSchemes	
{ default	steadyState;	{ default }	Gauss linear corrected;
}	 	interpolationSchemes	
gradSchemes {		{ default }	linear;
default	Gauss linear;	snGradSchemes	
}		{ default	corrected;
divSchemes		}	
{	 	fluxRequired	
default	none;	{ default	no;
div(phi,U)	Gauss upwind;	p;	,
div(phi,k)	Gauss upwind;	}	
div(phi,omega)	Gauss upwind;		
div((nuEff*dev(T	(grad(U))))) Gauss linear;		7 1
1	Ш		

2013/2/26

INGINEER OUR FUTU

fvSolution (1/2)

р		U	
{ solver tolerance relTol	GAMG; 1e-7; 0.01:	{ solver preconditioner tolerance	PBiCG; DILU; 1e-05;
smoother C	aussSeidel;	; renton ; };	0.1;
nPostSweeps	0; 2;	k {	
cacheAgglomeration agglomerator	on; faceAreaPair;	solver preconditioner	PBiCG; DILU;
nCellsInCoarsestLeve mergeLevels	el 10; 1;	tolerance relTol	1e-05; 0.1;
};		∥ }; ∥	

22

Ш

INGINEER OUR FUTU

fvSolution (2/2)

omega		potentialFlow		
{ solver preconditioner tolerance relTol	PBiCG; DILU; 1e-05; 0.1:	{ nNonOrthogo pRefCell pRefPoint pRefValue }	onalCorrectors	0; 0; 0; 0;
};	,	relaxationFactor	rs 0.05.	
SIMPLE			0.05; 0.15;	
<pre>{ nNonOrthogonalCor pRefCell pRefPoint pRefValue</pre>	rectors 0; 0; 0; 0;	к epsilon omega }	0.15; 0.15; 0.15;	
-				

Ĩ

NGINEER OUR FUT

解析結果 (Cd值)

NGINEER OUR FUT

解析結果 (圧力)

NGINEER OUR FUT

OpenCAE勉強会 岐阜

Fluid Engineering Laboratory, Kogakuin University

NGINEER OUR FUT

解析結果 (圧力)

解析の妥当性

抵抗係数解析結果0.29 は、参考値の0.3に近い 値と成って居る。

U=30m/sより、よどみ 点圧は動圧の式から算 出される値と同様の値 を示している。

NGINEER OUR FUTU

OpenCAE勉強会 岐阜

NGINEER OUR FUTUI

2013/2/26

OpenCAE勉強会 岐阜

Fluid Engineering Laboratory, Kogakuin University

NGINEER OUR FUTU

OpenCAE勉強会 岐阜

Fluid Engineering Laboratory, Kogakuin University

NGINEER OUR FUT

OpenCAE勉強会 岐阜

事例2の課題

マシンスペックが足りない事から境界層レ イヤを生成出来て居ない。この事から要素 数を減少させたが、車両フロントマスクの 湾曲がきつい為、現在も境界層レイヤの生 成に成功して居ない。

※念の為にyPlusRASを実行した所、平均30 であった。

境界層レイヤの有無を除けば、OpenFOAM-2.1.0を用いた非構造格子且つk-ωSSTモデル による要素数1億2千万の解析は成功したと 言える。