第1回OpenFOAM勉強会(2009年5月13日)

高層ビル周り流れの解析結果

風洞実験での風速測定点

5 . 18	_	45 . 55 . 65.	
6 <mark>.</mark> 16	<u> </u>	46 . 56 . 66.	
1. 3. 7.17	<mark>, 25, 31, 35, 39,</mark> 4	47 • 57 • 67•7	75•77•
8 <mark>.</mark> 18	• 26• 32• 36• 40• 4	48 • 58• 68•	
<mark>9_• 1</mark> 9	• 27• 41 • 4	49 . 59 . 69.	
0 <mark>, 20</mark>	<mark>• 28</mark> • 42 • 5	50 . 60 . 70.	
1 <mark>.2</mark>	<mark>• 29•</mark> 33• 37• 43• 5	51.61.71.	
2 . 4 . 12 . 22	• 30• 34• 38• 44• 5	52 <mark>.</mark> 62.72.7	76 . 78 .
3 <mark>,</mark> 23	e e	53 . 63.73.	
4 <mark>,</mark> 24	- t	54 . 64.74.	

高さ5mm(実高さ2m相当)

解析結果のサンプリング ▶OpenFOAM標準のsampleユーティ リティを使えば良い! ▶ただし、1.4系と1.5系ではsampleの 仕様が異なるので注意! ▶今回は、1.5系のsampleの使い方の 説明を行う

sampleの設定

system/sampleDict で設定する。

/*	*\
/ ======== \\ / \\ / \\ / \\/ *	F ield OpenFOAM: The Open Source CFD Toolbox O peration Version: 1.5 A nd Web: <u>http://www.openfoam.org</u> M anipulation
FoamFile { version format class location object }	2.0; ascii; dictionary; system; sampleDict;
// * * * * * * // Set outpu	* * * * * * * * * * * * * * * * * * *

setFormat: 集合サンプリング出力形式

通常はASCII生データ形式のrawで良い

surfaceFormat: 面サンプリング出力形式

// Surf	ace output	format. Choice of		
11	null	: suppress output		
11	foamFile	: separate points, faces and values file		
11	dx	: DX scalar or vector format		
11	vtk	: VTK ascii format		
11	raw	: x y z value format for use with e.g.		
gnuplot	'splot'.			
11	stl	: ascii stl. Does not contain values!		
surfaceFormat foamFile;				

foamFile形式だと断面のポリンゴンの 幾情報が詳しく得られるので、プロット ツールで複雑な図を書くのに有利

surfaceFormat: 面サンプリング出力形式

// Surfa	ace output f	or	nat. Choice of
11	null	:	suppress output
11	foamFile	:	separate points, faces and values file
11	dx	:	DX scalar or vector format
11	vtk	:	VTK ascii format
11	raw	:	x y z value format for use with e.g.
gnuplot	'splot'.		
11	stl	:	ascii stl. Does not contain values!
surfaceFormat foamFile;			

ただし、gnuplotなどで簡易にコンタ図 を描きたい場合には、raw形式が便利

interpolationScheme: 補間方法

// interpolationScheme. choice of
// cell : use cell-centre value only; constant over
cells (default)
// cellPoint : use cell-centre and vertex values
// cellPointFace : use cell-centre, vertex and face values.

interpolationScheme cellPointFace;

通常は、格子中心、節点、界面の値を 併用して補間する cellPointFaceの ほうが、精度が良いと思われる。

interpolationScheme: 補間方法

ただし、snappyHexMeshで生成され るようなsplit faceを持つ格子で は、cellPointFaceだと、断面での補 間結果が滑らかにならない場合あるの で注意する。

sets:集合サンプリング サンプルタイプ (type):

▶uniform: 指定した線上に一様分布 ▶ face: 指定した線と格子表面の交点 ▶midPoint: 格子表面の交点の中点 ▶midPointFace: faceとmidPoint ▶ curve: 曲線に沿って指定された点 ▶cloud: 指定された点群

高さ5mm(実高さ2m相当)

sets:集合サンプリング サンプルタイプ (type):

▶uniform: 指定した線上に一様分布 ▶ face: 指定した線と格子表面の交点 ▶midPoint: 格子表面の交点の中点 ▶midPointFace: faceとmidPoint ▶ curve: 曲線に沿って指定された点 ▶ cloud: 指定された点群

```
sets:集合サンプリング
sets
   measuringPoints
       type cloud;
       axis xyz;
       points ←測定点のリス
        (-0.55 \quad 0.25 \quad 0.02) //1
        (-0.55 - 0.25 0.02) //2
        (-0.45 \quad 0.25 \quad 0.02) //3
        (-0.45 - 0.25 0.02) //4
        (-0.35 0.45 0.02) //5
```


サンプリングの実践

スカラー型フィールドの場合

sets/472/measuringPoints_magU_k.xy :

X	Υ	Ζ	magU	k
-0.55	0.25	0.02	0.077014039	0.0043491656
-0.45 -0.45	-0.25 -0.25	0.02	0.068113905	0.0042166839 0.004291114

サンプリングの実践 速度ベクトルUのサンプリング結果を確認

カーソルキー↑

more sets/472/measuringPoints_U.xy

長い名前はTabキーで補間

サンプリングの実践

ベクトル型フィールドの場合

sets/472/measuringPoints_U.xy :

X	Υ	Ζ	Ux	Uy	Uz
-0.55 -0.55 -0.45	0.25 -0.25 0.25	0.02 0.02 0.02	0.076090407 0.076308817 0.067512361	-0.009761804 0.0098176701 -0.0041875344	-0.0010983665 -0.0012451114 0.0036109745
-0.45	-0.25	0.02	0.068236725	0.0040790761	0.0034883398

サンプリン 点の座標 axis: xyzの場合

サンプリンク 値(ベクトル値)

プロットの実践 gnuplotで実験値と比較 !ls exp/ カーソルキー↑ !more exp/split.txt 風速が何カラム目か確認 カーソルキー↑を何回か押して、黒字の文を出す plot "sets/472/measuringPoints_magU_k.xy" using 4 with lp title "CFD", "exp/split.txt" using 2 title "Exp."

```
プロットの実践
横軸、縦軸の説明を入れましょう
set xlabel "Point no."
カーソルキー↑
set ylabel "Velocity ratio"
           同じplotコマンドで書き直す場合
replot
           replotで良い
```


プロットの実践

チュートリアルケースのgnuplot の図をまとめてプロット&ビュー

make plotview

surfaces:面サンプリング setFormatがraw の場合、sampleによ る面サンプリングの結果は、以下のファイ ルに書き込まれる。 surfaces/時刻/副辞書名/ ←面の節点番号 faces points ←節点の座標 サンプル値 scalarField/スカラー型フィールド名 vectorField/ベクトル型フィールド名

surfaces:面サンプリング

面タイプ (type):

▶plane: 指定した平面上でサンプル

type plane; basePoint (1e-4 0 0); ←平面上の基準点 normalVector (1 0 0); ←平面の法線ベクトル

▶patch: パッチ上でサンプル

type patch; <mark>patchName</mark> movingWall; ←パッチ名

面データのプロット

複雑な面サンプリングデータを、高機能 なプロットツールに渡し、論文で掲載する のに耐えうるような高品質な図を、できる だけ自動的に作成したい。

高機能なプロットツールとして、ここでは GMTを用いる。

Generic Mapping Tools Graphics

python+matplotlibも有望だが今回は省略

▶ハワイ大学の地球海洋工学科の学生が1988年から 開発を初め、オープンソースで公開されているプ ロットツール

▶PostScript形式の高品質な図が出力できる

▶地球海洋工学の研究者が開発したことや、名称が Generic Mapping Toolsの略であることから、開発 当初は、海洋観測・シミュレーションデータのプ ロット用だったが、現在は汎用性が高い

▶GUIは全く無い ▶データの変換、処理のコマンドやプロットのコマ ンドをシェル上で複数実行する必要がある ▶図を重ね合わせることで複雑な図を仕上げるとい う、UNIX的ではあるが初心者には難解な構造 ▶コマンドのオプンショが多くて複雑 ▶GMTを実用的に使うには、個々の図に対して、 シェルスクリプトを書く必要があった

▶sampleの面サンプリング出力をGMTでプロット するには、GMT用入力データへの変換が必要 ▶変換にはruby等のスクリプトが適当 ▶データ変換と、GMTコマンドの実行をrubyスクリ プトで一括して行なえば良いのでないか? ▶また、メッシュやベクトル、コンター図といった 良く描く図は、簡単なオプション指定で自動的にプ ロットできるようにしたい!

rubyによるGMTのラッパーgmtFoam作成

gmtFoamとは?

 ▶sampleユーティリティーのサンプリング出力を加 エしてGMTに渡し、メッシュ、ベクトル、コンター 等の図をプロットするrubyスクリプト
 ▶まだオプションの方針が固まっていないのと、オ プションのヘルプも出ないので、公開はしていない
 ▶ある程度整備ができれば、OFWikiJa等で公開予定

gmtFoamでプロットの実践 使用法: gmtFoam [オプション] 副辞書名 主なオプション:

▶-a 引数 : 図の1軸2軸を指定 (例: -a yz) ▶-b : 図に枠を付ける ▶-m : メッシュを描く ▶-v : ベクトル図を描く

gmtFoamでプロットの実践 端末で赤字のように打ってみましょう!

run

cd highRiseBuildingInCityBlocks/Odeg/

ls surfaces/472/

gmtFoamでプロットの実践 メッシュ図を作成してみましょう! gmtFoam -m -a xy z0_02 gv -watch gmtFoam.eps & &を付けるとバック・グラウンド・ジョブとなり、 他のコマンドを続けて実行できる。 カーソルキー↑ ×2回 gmtFoam -m -a xz y0

gmtFoamでプロットの実践 ベクトル図を作成してみましょう! カーソルキー1 gmtFoam -v -a xz y0

gmtFoamでプロットの実践 チュートリアルケースのgmtFoamの図を まとめてプロット&ビュー

make figview

講習は以上で全て終了です!

大変お疲れさまでした!